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Resumo 

Num contexto de produção contínua, garantir a qualidade e conformidade do produto 

requer estratégias de monitorização e controlo em tempo real. O teste de dissolução, 

tradicionalmente realizado offline, continua a ser um processo demorado e que consome 

recursos. Este trabalho foca-se no desenvolvimento de modelos de dissolução de forma 

a viabilizar o real-time release testing, um passo crítico para aumentar a eficiência, 

reduzir custos e facilitar os requisitos regulatórios.  

 

Neste trabalho, modelos mecanísticos de dissolução foram combinados com técnicas 

quimiométricas para permitir a previsão de perfis de dissolução de comprimidos de 

libertação imediata. Três modelos – erosion, z-factor, e modified N-W – foram avaliados 

nesta dissertação. As equações foram ajustadas a dados de dissolução experimentais 

com o objetivo de obter parâmetros otimizados. Foram construídos modelos de PLS 

para correlacionar os dados espectrais de misturas e comprimidos com os parâmetros 

das equações. Foi também realizada uma validação externa para avaliar a performance 

de cada modelo. 

 

Os resultados mostraram que todos os modelos apresentaram um bom ajuste aos 

dados experimentais, enquanto o modelo erosion demonstrou o maior poder preditivo. 

 

Adicionalmente, nesta tese foi definido um procedimento para calibrar modelos 

preliminares de dissolução com apenas experiências laboratoriais.  

 

Palavras-chave: real-time release testing, dissolution, continuous manufacturing, model 
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Abstract 

In the context of continuous manufacturing, ensuring product quality and compliance 

requires real-time monitoring and control strategies. This work focuses on enabling the 

development of dissolution models as a pathway to real-time release testing, a critical 

step to enhance efficiency, reduce costs, and meet regulatory requirements. Dissolution 

testing, traditionally performed offline, remains a time-consuming and labor-intensive 

process.  

 

Herein, mechanistic dissolution models were combined with chemometric techniques 

to allow the prediction of drug release profiles. Three models – z-factor, erosion, and 

modified N-W – were evaluated in this thesis. The equations were fitted to experimental 

dissolution data with the aim of obtaining optimized parameters. PLS models were built 

to correlate spectral data of blends and tablets to the equation parameters. External 

validation was also performed.  

 

Results showed that all models provide a good fitting, while the erosion model showed 

the highest predictive power.  

 

Additionally, a methodology to calibrate preliminary dissolution models using only 

laboratory experiments was developed in this thesis. 

 

Keywords: real-time release testing, dissolution, continuous manufacturing, model 
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1. Introduction  

1.1 Continuous Manufacturing and RTRT 

Since the early 2000’s, big pharma companies have been trying to modernize the 

sector, with encouragement from regulatory entities. This comes at a time when the 

industry faces several challenges – rising R&D costs to develop a compound, patent 

expirations, longer times to product launch, demand for quality and precision medicine, 

and decreasing return on investment1,2. 

The introduction of the Quality by Design (QbD) approach and the FDA’s PAT 

framework have fostered a significant investment in new technologies, process 

understanding and process development3,4.  

Aligned with these initiatives, is the implementation of continuous manufacturing 

(CM). The standard for pharmaceutical companies is batch manufacturing, despite time 

and scale-dependent processes that lack flexibility and robustness1,5. In batch 

manufacturing, raw materials are charged in the beginning of the process and products 

are discharged all at once at the end. In continuous manufacturing, process inputs and 

outputs are continuously fed for as long as needed, in an integrated system of unit 

operations, and lot size is defined by run-time, not volume1,6. Figure 1 represents some 

of the typical unit operations of tablet manufacturing and highlights the amount of testing 

and time spent in storage, and the differences in output time of batch versus continuous 

manufacturing.  

 

 

Figure 1 - Schematic representation of batch and continuous processes. 
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CM offers several advantages, particularly for oral solid dosage forms: batch size 

flexibility, easier scale up, faster response to demands, improved product quality, 

decreased cycle times, smaller plants with lower carbon footprints, and lower 

developmental and manufacturing costs1,7. Schaber et al8. published an economic 

analysis comparing batch and continuous processes and found that overall savings of 9 

to 40% could be achieved.  

As per QbD principles, quality should be inherently built into the product. This is 

achieved with enhanced product knowledge and process understanding5. A 

manufacturing process may be considered well understood when it is designed to meet 

product critical quality attributes consistently, and sources of process variation are 

identified, detected, controlled and monitored to ensure quality 9.    

Thus, CM benefits from the application of advanced monitoring tools, such as process 

analytical technology (PAT), that provide real-time measurements of material attributes 

and critical quality attributes (CQAs). In turn, the acquired data enables an active process 

control, in which critical process parameters (CPPs) are adjusted according to what the 

process requires to maintain desired CQAs. Ultimately, this state-of-control achieved by 

CM leads to improved product quality assurance and enables real-time release testing 

(RTRT)5.  

Medicinal products must comply with approved specifications before release onto the 

market. Compliance with these specifications is typically evaluated by performing a set 

of tests on the finished product10. However, given ICH’s Q8 guideline, if all necessary 

conditions are met, a different testing approach can be used11. 

 Real-time release testing is the ability to evaluate and ensure the quality of a final 

drug substance/drug product based on in-process data12. This strategy aims to leverage 

process and product understanding to reduce time and resource consuming end-product 

testing. It can be applied to all or certain CQAs only. In the case of the latter, a 

combination of conventional tests and RTRT is then used10,12. 

It is worth noting that RTRT is independent of the mode of manufacture. However, 

citing the FDA, “it is important to recognize that the synergy of RTRT and CM affords the 

greatest advantages to the pharmaceutical industry when striving towards operational 

and regulatory flexibility”13. 

 

1.2 Predictive Modeling 

Development of real-time tests includes14:  

• Direct measurement of the CQA during manufacturing  

• Prediction of a CQA/variable based on an empirical model 
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• Prediction of a CQA/variable based on a first-principles model 

• Operation of CPPs within a pre-specified design space  

 

Direct measurement of a variable/CQA is often not possible, and a discussion about 

design space determination is out of scope for this work. Therefore, the focus will be on 

the development of predictive models.  

A model is a simplified representation of a system using mathematical terms. Models 

can enhance scientific understanding and possibly predict the behavior of a system 

under a set of conditions12. 

The use of these models in the pharmaceutical industry was introduced along with 

the QbD framework and they can be applied at all stages of development or during 

commercial manufacturing. The overall steps to develop and implement a model are12:  

 

• Define the purpose of the model 

• Decide the modeling approach (mechanistic, empirical, etc) and possible 

sampling methodology 

• Select variables for the model based on risk assessment, underlying physical-

chemical phenomena, and process knowledge and prior experience 

• Understand the limitations of the model 

• Collect experimental data to support model development. Data can be collected 

at laboratory, pilot, or commercial scale. Variable ranges evaluated should be 

representative of conditions that would be expected during operation 

• Develop model equations and estimate parameters  

• Validate the model 

• Document the outcomes of model development and create plans for verification 

and updating of the model throughout the lifecycle of the product.  

 

For regulatory submissions, models can be classified into three different categories, 

depending on their contribution to assuring the quality of the product: low-impact, 

medium-impact, and high-impact models. Real-time release models are always 

considered high-impact, as their predictions are main indicators of product quality and 

will be used to make release decisions. Therefore, the approach described in the ICH’s 

Working Group Points to Consider for model development, validation and maintenance 

is relevant12,15. 

Quality attributes can be monitored with PAT tools such as near-infrared (NIR) or 

Raman spectroscopy, but typically a multivariate model (usually PLS) needs to be 
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developed to relate the measurement from the sensor to a variable of interest 

representing the CQA being tested. Chemometric models for blend homogeneity, 

content uniformity, moisture content and granule size, for instance, have been 

extensively described in literature5,15.  

These are examples of empirical models, and they do not describe underlying 

physical-chemical phenomena (e.g. mass/energy balances, thermodynamics, transport 

phenomena, etc.) and so provide an incomplete process and product understanding. 

They also require larger calibration datasets and have a limited range of applicability in 

case formulation or process changes happen5,16.   

As such, mechanistic (or first-principles) models derived from fundamental laws of 

physics, chemistry, or biology can be employed. First-principles models work with 

smaller datasets and extrapolate well to new conditions. Typically, developing equations 

that represent the system well is the main bottleneck of these models5,16. 

Hybrid models that combine both mechanistic and empirical approaches to balance 

the advantages of each can also be used: empirical derived parameters can be inputs 

for first-principles models, and vice-versa16,17.  

Markl et al.5 provide a thorough review on RTRT for pharmaceutical tablets and 

include a development workflow.  

 

1.3 Overview of Dissolution Models  

Dissolution testing is an in vitro laboratory test that assesses how efficiently a drug is 

released from its dosage form. In manufacturing, it is used routinely as a batch release 

test, detecting changes in target product profiles (TPPs) or in critical quality attributes 

(CQAs) that might affect in vivo release. It is an integral part of regulatory filings for new 

drug applications or in demonstrating bioequivalence and approvals worldwide.  

Conventional dissolution tests are destructive, lengthy and resource consuming. They 

require instrument calibration, sample and media preparation, and data collection (many 

times by HPLC). Furthermore, it is a technique prone to equipment and analyst-to-

analyst variability18.  

Development of a surrogate dissolution test is only possible with a mathematical 

model that will predict release profiles based on formulation composition, process 

parameters, information from spectroscopic tools, or chemical engineering first 

principles. 

When the study of the dissolution process began, it was not related to drugs at all. In 

their 1897 publication, Noyes and Whitney described dissolution as a 1st-order rate 

process, which, when sink conditions are applied, reduces to 0-order19. According to 
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equation 1, the dissolution rate of a solid in a solvent is dependent on a rate parameter, 

𝑘 and the difference between saturation solubility, Cs and instantaneous concentration, 

C.  

 

(1)    
𝑑𝐶

𝑑𝑡
= 𝑘(𝐶𝑠 − 𝐶) 

 

Three mechanisms are responsible for dissolution of a particle: breakdown of bonds, 

diffusion of molecules in the boundary layer, and convection in the stirred bulk solution20. 

Typically, diffusion in the boundary layer is the rate-limiting step of dissolution. Later on, 

Nernst and Brunner related Fick’s first law of diffusion to the Noyes-Whitney equation20. 

The equation is then represented by  

 

(2)    
𝑑𝐶

𝑑𝑡
= −

𝑆∙𝐷

𝑉∙ℎ
(𝐶𝑠 − 𝐶),  

 

where, S is the surface area, D is the diffusion coefficient, V is the volume of solvent, 

and h is the height of the boundary layer. Thus, the dissolution rate of a particle is 

dependent on the concentration gradient, which is in turn dependent on the diffusion 

coefficient, surface area, and boundary layer. 
𝐷

ℎ
 is constant during the dissolution 

process, while surface area changes over time. 

Much work has been done on expanding the Noyes-Whitney equation and further 

breaking down the 𝑘 constant from equation (1) into molecule and media-dependent 

properties. Adding dependencies and interdependencies helps identifying parameters 

that contribute the most to the rate constant and increases process understanding17.  

Most first-principles models for predicting dissolution consist of modifications to the 

original Noyes-Whitney equation. The 𝑧-factor equation, described by both Nicolaides et 

al. and Takano et al. is an example of that21,22.  

Hofsass and Dressman23 studied the suitability of the 𝑧-factor for solid dosage forms. 

In their publication, the relationship between initial particle mass M0 and undissolved 

particle mass Ms is used to describe the surface area available. Assuming all particles 

are spherical, with uniform particle density, initial radius r0, and volume to surface ratio 

of 
𝑟0

3
, the Noyes-Whitney equation becomes:  

 

(3)    −
𝑑𝑀𝑠(𝑡)

𝑑𝑡
=

3𝐷

ℎ𝜌𝑟0
∙ 𝑀0

1

3 ∙ 𝑀𝑠(𝑡)
2

3 ∙ [𝐶𝑠 − 𝐶(𝑡)] 
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Since 
𝐷

ℎ
 is constant, the equation can be transformed into:  

 

(4)    −
𝑑𝑀𝑠(𝑡)

𝑑𝑡
= 𝑧 ∙ 𝑀0

1

3 ∙ 𝑀𝑠(𝑡)
2

3 ∙ [𝐶𝑠 − 𝐶(𝑡)] 

 

This model assumes that at t=0 the complete dose of API is immediately available for 

dissolution, which, as discussed by Hoffman and Dressman, can have downsides if 

tablets present higher disintegration times or coning happens.  

Kang et.24 Al also obtained fitted (predicted) dissolution curves by using a modified 

Noyes-Whitney model somewhat similar to the 𝑧-factor. Assuming a cylindrical tablet, 

and that 𝑆 = 𝛼(𝑉𝑡)
2

3,  

 

(5)    
𝑑𝐶

𝑑𝑡
= 𝑘𝛼(𝑉𝑡 − 𝑉𝑑)

2

3(𝐶𝑠 − 𝐶𝑡), 

 

where 𝑘 is the dissolution rate constant, Vt is tablet volume, Vd is dissolved volume, Cs 

is solubility concentration and Ct is concentration of drug dissolved at time t. If 𝑘 and 𝛼 

are constants, and at time t Vd is determined by Ct, the tablet density ρ, and solvent 

volume Vs, then equation (5) is converted as follows:  

 

(6)    
𝑑𝐶

𝑑𝑡
= 𝐾(𝐶𝑑 − 𝐶)

2

3(𝐶𝑠 − 𝐶𝑡) 

 

For more details on the transformations made to obtain this equation, the reader is 

directed to the original article24.   

Other mathematical relationships describing dissolution based on first-principles have 

since appeared. For instance, Wilson et. al25 used a mechanistic population balance 

approach to link both disintegration and dissolution in a model. To model disintegration, 

they assumed a cylindrical tablet with an isotropic linear erosion rate. The volume of the 

tablet as a function of time can then be described as:  

 

(7)    𝑉(𝑡) =
𝜋

4
(𝑑0 −

𝑑𝑟

𝑑𝑡
∙ 𝑡)

2
(ℎ0 −

𝑑𝑟

𝑑𝑡
∙ 𝑡), 

 

where V is the volume of the undissolved tablet at time t, d0 is the initial tablet diameter, 

h0 is the initial thickness, and 
𝑑𝑟

𝑑𝑡
 is the erosion rate, which is assumed constant along the 

dissolution.  
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Su et al.26 also presented a population balance model for immediate-release tablets 

produced in a continuous extrusion-molding-coating line. To describe the change in 

tablet volume, an equation similar to equation (7) was used.  

Regarding empirical models, much of the work has been done using near-infrared 

(NIR) spectroscopy in combination with multivariate data analysis27–30. Zhao et 

al.18predicted tablet dissolution by training PLS models with formulation, material, and 

process variables, NIR spectra, and a combination of both. Empirical functions - e.g 

Weibull, Korsmeyer-Peppas (semi-empirical), Hixson and Crowell – can also describe 

dissolution profiles31. Machine learning algorithms, such as artificial neural networks, 

have been developed to predict dissolution profiles, with CMAs and PAT measurements 

as inputs.32  

Examples of hybrid models have also been published. For instance, Wu et.33 al 

combined NIR spectroscopy with mechanistic modeling to predict the dissolution 

behavior of film-coated modified-release tablets. In this case, empirical derived 

parameters were used as inputs for first-principles models.   

As far as application in industry goes, a few cases have been reported. The first 

achieved regulatory approval of real-time release testing (RTRT) in Europe was 

developed by AstraZeneca and applied on a batch production line. Dissolution was 

predicted by a multivariate regression model, based on a design of experiments (DoE) 

with variations in two material attributes.34 

Vertex’s RTRT-D method for a CM line employs a model based on a modified Noyes-

Whitney equation. The 𝑧 parameter is calculated using measured material attribute 

results and a PLS model. Prediction of the dissolution curve’s plateau is done by 

measuring API content in the final blend directly using in-line NIR. The predicted 𝑧 and 

extent of release are then used to calculate the full dissolution profile. PLS models were 

calibrated by fitting experimental dissolution profiles to the modified Noyes-Whiteny 

equation and determining 𝑧 for each profile.34 

Janssen has also developed RTRT for a batch product. Firstly, a design of 

experiments (DoE) is used to identify CPPs. A “process” model was built to relate CPPs 

to either time points on dissolution profiles or parameters of the Weibull function. A 

regression was then applied, with data on the content of tablets, collected by NIR, being 

added to the model. Finally, a predictive surrogate model based on a population average 

approach was developed, with inputs being CPPs and NIR content34.  

Recently, the FDA has released a review of the agency’s regulatory experience with 

RTRT for dissolution (RTRT-D)13. The aims are increasing high-quality regulatory 

submissions involving both CM and RTRT-D and lessening the burden of regulatory 

reviews. The article highlighted the most common deficiencies observed in applications 
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and of the thirteen case studies presented, only three were approved. Some 

recommendations made by the agency were as follows:  

• Development of dissolution method, which should be discriminating against as 

many CMAs and CPPs as possible 

• The real-time surrogate test should predict complete dissolution profiles, not just 

specific time points 

• RTRT-D should be able to provide information on intra-batch variability and to 

reject non-equivalent drug product batches 

• Sufficiently broad DoE studies that take advantage of risk assessment to identify 

CMAs and CPPs and their linkage to CQAs 

• Justification on choice of model and thorough documentation on calibration and 

validation 

• Justification and specification of model validation acceptance criteria (MVAC) 

• Adequate sampling plan  

• Plan for RTRT-D maintenance 

 

1.4 Aim of the Study 

The aim of this project was to develop predictive models for dissolution with a hybrid 

approach. First-principles equations were fitted to experimental dissolution profiles and 

equation parameters were determined. PLS regressions were applied to predict the 

parameters from NIR and Raman spectra, and to predict the assay content of tablets. 

Hypothetically, these models could be applied in continuous, or batch, tableting lines for 

real-time release testing purposes. Methods will be further described in the next chapter, 

but for better understanding, a scheme of the workflow is represented in figure 2.  

 

 

 

Figure 2 - Simplified workflow for the development of the dissolution models in this work. 



9 

2 Materials and Methods 

2.1 Materials 

For the tablets, Avicel® PH 102 microcrystalline cellulose (Hovione’s material code 

5510616, DuPont, DE, USA) was used as diluent, Ac-Di-Sol® sodium croscarmellose 

(Hovione’s material code 110606, DuPont, DE, USA) as disintegrant, and magnesium 

stearate (Hovione’s material code 110607, Merck KGaA, Darmstat, Germany) as the 

lubricant. The API of choice was ibuprofen (purity unknown, Hovione’s material code 

5512278, MolCore BioPharmatech Co., Hanghzou, PRC).  

Sodium phosphate monobasic, anhydrous, purity >99% (Sigma-Aldrich, Hovione’s 

material code 312801, MO, USA), and sodium dodecyl sulfate (Hovione’s material code 

5510886, Fisher Bioreagents, Loughborough, UK) were used for the dissolution medium. 

Formic acid, purity >98% (Hovione’s material code 111452, Honeywell, NC, USA) and 

acetonitrile (Hovione’s material code 312889, Merck KGaA, Darmstat, Germany) were 

used for the mobile phases. Ultrapure water was obtained from a Milli-Q® IQ 7000 water 

system (Merck KGaA, Darmstadt, Germany).  

 

2.2 DoE and Preparation of Blends 

A risk assessment was conducted to identify the material attributes and process 

parameters with potential impact on dissolution in a direct compression process. It was 

concluded that blend formulation, API attributes and tablet properties were the most 

interesting parameters to vary in a DoE. Unfortunately, it was not possible to obtain 

different API lots with varying attributes. As such, only blend formulation and tablet 

attributes were evaluated. 

The experimental design consisted of a 3-level full factorial design (figure 3) which 

included three formulation variables: API, disintegrant, and lubricant percentage. A 

process parameter - compression force - was also varied to obtain tablets with different 

solid fractions. The formulation was for immediate-release, directly compressible tablets. 

Thus, a total of nine blends of 25g each were prepared according to the percentages 

in table 1, with batch B9 acting as the center point in the DoE. Microcrystalline cellulose, 

croscarmellose sodium and ibuprofen were passed through a 600 µm sieve and mixed 

in a TURBULA® T2 GE, (WAB-Group, Muttenz, Switzerland) for 4 minutes at 32 rpm. 

Lubricant was also sieved, added shortly before compression and blended for another 2 

min at 32 rpm.   
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Figure 3 – 3-Level Full Factorial Design of Experiments (DoE). 

 

Table 1 - Composition of each blend in percentage (%) and respective quantities per tablet (mg). 

Batch 
MCC 
(%) 

Ac-Di-Sol 
(%) 

Ibu (%) MgSt (%) 
MCC 
(mg) 

Ac-Di-Sol 
(mg) 

Ibu 
(mg) 

MgSt 
(mg) 

B1 56.5 3.00 40.0 0.50 226 12.0 160 2.00 

B2 55.5 3.00 40.0 1.50 222 12.0 160 6.00 

B3 51.5 7.00 40.0 1.50 206 28.0 160 6.00 

B4 41.5 7.00 50.0 1.50 166 28.0 200 6.00 

B5 46.5 3.00 50.0 0.50 186 12.0 200 2.00 

B6 42.5 7.00 50.0 0.50 170 28.0 200 2.00 

B7 45.5 3.00 50.0 1.50 182 12.0 200 6.00 

B8 52.5 7.00 40.0 0.50 210 28.0 160 2.00 

B9 49.0 5.00 45.0 1.00 196 20.0 180 4.00 

 

2.3 Tableting  

A benchtop compaction simulator (STYL’One Nano, Korsch AG, Berlin, Germany) 

was used to compress the powder blends into tablets. The tooling were 10 mm flat-faced, 

round punches and the target weight for tablets was 400 mg (± 3%). As detailed in figure 

3, tablets were produced with target solid fraction (SF) values of 0.75 and 0.85 (± 0.01) 

for batches B1-B8. For batch B9, only tablets with SF of 0.80 (± 0.01) were obtained. 

The thickness of all tablets was measured with a digital micrometer and the density was 

calculated based on weight and volume. 

 

2.4 Spectroscopy (NIR and Raman) 

Near-infrared (NIR) spectra were collected from all blends before tableting. A probe 

(SentroProbe DR LS, Sentronic, Dresden, Germany) was inserted in each blend 

container, and reflectance values were obtained from 1100 to 2100 nm. The acquisition 

settings of the spectrophotometer (SentroPAT FO, Sentronic, Dresden, Germany) were 

% API 

% Disintegrant 

% Lubricant 

  Solid fraction 0.75 

Solid fraction 0.85 

Solid fraction 0.80 
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integration time of 0.01 s and an average number of 50. Three or more replicates of each 

blend were acquired.  

Raman spectra of the tablets were collected prior to the dissolution tests. The 

spectrometer used was an i-Raman Prime 785S coupled with the tablet analyzer QT-

Sampler (Metrohm, Herisau, Switzerland). The spectral range was 150 to 2799 cm-1, with 

laser power at 100%, exposure time of 3000 ms per scan and a total of 10 scans. Spectra 

were obtained of the front and back of each tablet, without replicates.  

 

2.5 In-vitro dissolution testing  

A total of 17 tablets were used in the dissolution testing. Two tablets - with SF of 0.75 

and 0.85 - were selected from batches B1 to B8. Additionally, a tablet with SF of 0.80 

was selected from batch B9. Testing was conducted in a VK7025 Varian (Agilent, CA, 

USA) dissolution apparatus (USP Apparatus 2). The medium used was 50 mM 

phosphate buffer pH 4.5, 1% SDS. Temperature was at 37 ± 0.5ºC, with paddle speed 

at 50 rpm in 900 mL of media. A syringe with a stainless steel canula and a 35 µm filter 

was used to manually draw up aliquots of 5 mL. Samples were directly placed in HPLC 

amber vials. Timepoints were taken at 5, 10, 20, 30, 45, and 60 min. There were no 

replicates (n=1). Any samples that could not be analyzed immediately after dissolution 

were kept in the fridge at 8ºC. 

 

2.6 High-Performance Liquid Chromatography (HPLC) 

The samples were analyzed on an Accquity UPLC (Waters, MA, USA) to determine 

the amount of API dissolved at each timepoint. The method for ibuprofen analysis had 

already been developed prior to this work. The column used was an Accquity 

C18 100x2.1mm 1.7µm at 35ºC. The mobile phases consisted of 0.1% formic acid in 

water and 0.1% formic acid in acetonitrile. Run time per sample was 25 minutes and 

sample temperature was kept at 8ºC.  

 

2.7 Dissolution Models 

Three models were evaluated in this thesis, and fitted to the experimental dissolution 

data (Excel, Microsoft Corporation, WA, USA) with the aim of obtaining optimized 

equation rate parameters for each tablet. The models, respective parameters, and 

additional inputs are described in table 1.  
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z- Factor Model 

The z-factor model was based on the integration of equation (4) assuming sink 

conditions (Cs at least three times higher than maximum C), which yields the equation: 

 

(8)    𝑀𝑠(𝑡) = (
3∙𝑀0

1
3 − 𝑀0

1
3.∙𝑧∙𝑡

3
)

3

, applicable for 𝑡 ≤
3

𝑧
 

 

The solubility saturation (Cs) from equation (4) was removed, because it was not 

experimentally determined. However, this parameter is constant for all tablets since the 

same API was used. Therefore, it can be incorporated in the z parameter. 

This model differentiates from the other models evaluated in this thesis, mostly from 

the assumption that all API is available for dissolution at t=0, as detailed in section 1.3 

from the introduction.  

 

Erosion Model 

The erosion model is based on equation (7), which describes the tablet size reduction 

along the dissolution time. This model assumes that the API release from the tablet is 

the limiting step for dissolution. This way, the API dissolved (Md) may be estimated from 

the volume reduction with the equation:  

 

(9)    𝑀𝑑(𝑡) = [𝑉0 − 𝑉(𝑡)] ∙ 𝜌 ∙ 𝐴𝑃𝐼𝑐𝑜𝑛𝑐 

 

Where V0 is the initial volume of the tablet and V is the volume at time t estimated with 

equation (7). 𝜌 is the tablet density and APIconc is the initial concentration of API in the 

formulation (weight ratio). The model parameter that dictated the dissolution rate is the 

erosion parameter 
𝑑𝑟

𝑑𝑡
 from equation (7).  

 

Modified N-W Model 

The third model considered consists in a combination of equation (6) and equation 

(7). This model is a variation of the Noyes-Whitney equation, without the assumption that 

all API is available for dissolution at the beginning of the test. Instead, as disintegration 

proceeds, undissolved API will gradually be made available for dissolution. The API 

available in solution is estimated based on the volume change of the table, excluding the 

API that is already dissolved.  
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(10)    𝐶𝐴𝑃𝐼_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑡) =
[𝑉0−𝑉(𝑡)]∙𝜌∙𝐴𝑃𝐼𝑐𝑜𝑛𝑐

𝑉𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
− 𝐶(𝑡), 

 

Where the tablet volume at time t is estimated with equation (7). Equation (10) was 

incorporated in equation (6) resulting in the equation: 

 

(11)    
𝑑𝐶

𝑑𝑡
= 𝐾(𝐶𝐴𝑃𝐼_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒)

2

3(𝐶𝑠 − 𝐶) 

 

This model requires the calibration of two parameters, 𝐾 and 
𝑑𝑟

𝑑𝑡
 to predict the 

dissolution profile. Table 1 summarizes the models evaluated in this work. 

 

Table 2 - Equations used to model dissolution data and respective rate parameters and other inputs. 

 

 

2.8 Data Analysis 

PLS models for both blend and tablet datasets were developed using SIMCA 

(Sartorius, Göttingen, Germany) to correlate respective spectral data to the predicted 

model parameters. The calibration set included batches B1-B8, while batch B9 was used 

to perform external validation and evaluate model performance. Spectra preprocessing 

was also applied in SIMCA.  

 

2.9 Tablet Disintegration Tests 

Spare tablets with the same composition and solid fraction level as the ones dissolved 

were tested to provide an estimate of their disintegration time. The equipment was the 

SOTAX DT-50 basket-rack apparatus (SOTAX Group, Basel, Switzerland). The medium 

Model Equation 
Rate 

Parameter 
Additional Inputs 

z-factor 𝑀𝑠(𝑡) = (
3∙𝑀0

1
3 − 𝑀0

1
3.∙𝑧∙𝑡

3
)

3

, applicable for 𝑡 ≤
3

𝑧
 𝑧 API Load 

Erosion 
𝑉 (𝑡) =

𝜋

4
(𝑑0 −

𝑑𝑟

𝑑𝑡
∙ 𝑡)

2
(ℎ0 −

𝑑𝑟

𝑑𝑡
∙ 𝑡) 

 

𝑀𝑑(𝑡) = [𝑉𝑖 − 𝑉𝑓(𝑡)] ∙ 𝜌 ∙ 𝐴𝑃𝐼𝑐𝑜𝑛𝑐 

𝑑𝑟

𝑑𝑡
 

Tablet diameter 
Tablet thickness 
Tablet density 
Tablet weight 

API Load 

Modified 
N-W 

𝑉 (𝑡) =
𝜋

4
(𝑑0 −

𝑑𝑟

𝑑𝑡
𝑡)

2
(ℎ0 −

𝑑𝑟

𝑑𝑡
𝑡) 

 

𝐶𝐴𝑃𝐼_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑡) =
[𝑉0 − 𝑉(𝑡)] ∙ 𝜌 ∙ 𝐴𝑃𝐼𝑐𝑜𝑛𝑐

𝑉𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
− 𝐶(𝑡) 

𝑑𝐶

𝑑𝑡
= 𝐾(𝐶𝐴𝑃𝐼_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒)

2
3(𝐶𝑠 − 𝐶) 

𝑑𝑟

𝑑𝑡
, 𝐾 

Tablet diameter 
Tablet thickness 
Tablet density 
Tablet weight 

API Load 
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was deionized water at 37 ± 0.5ºC. Due to tablet debris interfering with automatic end-

point detection, disintegration times were recorded manually. To reduce debris buildup, 

only three of the six tubes were used at a time.  
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3 Results and Discussion  

3.1 Dissolution Profiles 

Figure 4 represents the dissolution profiles obtained for the calibration set of the 

models - tablets from batch B1 to batch B8.  

In samples with the same formulation but different SF levels, a higher SF led to slower 

dissolution rates. This is expected as more force was used to compress the powder. 

Based on the profiles obtained, it is not possible to distinguish other variations between 

formulations. 

 

Figure 4 - Dissolution profiles of tablets from batches B1-B8. 

In all experiments, the percentage of API released did not reach 100% and it is worth 

noting that a proper dissolution method for ibuprofen was not developed for this work 

due to time constraints. Firstly, the 50 mM phosphate buffer pH 7.2 (described in the 

USP) was tested, but complete dissolution of the API was very fast, and profiles were 

not discriminatory enough. Given that ibuprofen is the most soluble at pH 7.2 and its 

solubility decreases in lower pH levels, a 50 mM phosphate buffer pH 4.5 with 1% SDS 

was used instead. Solubility tests were not performed and sink conditions were not 

assured. Coning occurred in all experiments after dosage form disintegration. The 

presence of coning may affect dissolution of poorly soluble APIs, as they are not fully 

exposed to the medium.  

Furthermore, the HPLC method used for ibuprofen quantification stated a sample 

temperature of 8ºC. After several runs, it was realized that samples at this temperature 

froze and precipitated in the vials during HPLC analysis, possibly also affecting 

quantification. This issue, along with an inadequate dissolution medium might have 
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caused the incomplete dissolution of the ibuprofen and the erratic profiles obtained. As 

such, models might have been fitted and calibrated based on faulty data. 

 

3.2 Curve-Fitting 

 

z-Factor Model 

The z-factor model assumes that all particles are available for dissolution, which might 

not have been the case since dissolution did not reach 100%. It was necessary to adjust 

the data according to equation (12),  

 

(12)    𝐴𝑃𝐼𝑎𝑑𝑗 =  (𝐴𝑃𝐼𝑒𝑥𝑝 𝐴𝑃𝐼𝑡𝑜𝑡𝑎𝑙) ∙ ⁄ 𝐴𝑃𝐼𝑙𝑜𝑎𝑑,  

 

where APIadj is the adjusted amount of API released. The amount of drug released at 

each timepoint (APIexp) was divided by the total API released (APItotal), then multiplied by 

the theoretical API load of the tablet (APIload). This provided a normalized release profile, 

expressed relative to the drug content in the tablet. Had this not been done, there would 

have been an offset between the experimental and the modeled data. An example of the 

curve-fitting without adjusting the experimental data is presented in figure 5.  

 

a b 

Figure 5 (a, b) - Dissolution profiles of batch B1 modeled by the z-factor equation and curve-fitted to the 
original experimental data.  

 

Figure 6 (a-p) shows the modeled data with the adjusted experimental data.   
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i j 

k l 
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Figure 6 (a-p) - Dissolution profiles of batches B1-B8, with both SF levels, modeled with the z-factor equation. 

 

Erosion Model 

Figure 7 (a-p) represents the dissolution curves fitted with the erosion model. The 

experimental drug release also needed to be adjusted according to equation (12). This 

model does not assume that all API is available at the beginning of the test, but instead 
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that the whole tablet gradually erodes, with all API being released and consequently 

dissolved. 
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Figure 7 (a-p) - Dissolution profiles of batches B1-B8, with both SF levels, modeled with the erosion equation. 

 

Modified N-W Model 

Predicted dissolution profiles obtained with the modified N-W model are presented in 

figure 8 (a-p). It was not necessary to adjust the experimental release as this model does 

not assume sink conditions. The parameter 𝐶𝑠 was adjusted to account for the maximum 

solubility.  
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As explained previously, this equation requires the calibration of two parameters, 
𝑑𝑟

𝑑𝑡
 

and 𝐾. However, the parameter 
𝑑𝑟

𝑑𝑡
 was not calibrated. Instead, it was estimated based 

on the disintegration time of the tablets.  

Disintegration tests showed that for tablets with the same SF level, the disintegration 

time was similar. Therefore, to calculate the 
𝑑𝑟

𝑑𝑡
, the height of each tablet was divided by 

the mean disintegration time of either SF level. Tablets with SF of 0.75 disintegrated in 

approximately one minute, corresponding to a 
𝑑𝑟

𝑑𝑡
 of 300 mm/h. Tablets with SF of 0.85 

disintegrated in about 1 min 30 seconds, which gives an erosion rate of 200 mm/h.  
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o p 

Figure 8 (a-p) - Dissolution profiles of batches B1-B8, with both SF levels, modeled with the modified N-W 
equation. 

 

Figure 9 denotes the fractions of API still in the tablet, API undissolved, and API 

dissolved over time for tablet B1 SF0.75. The fraction of API in the tablet declines very 

quickly, due to rapid disintegration. As disintegration occurs and API is exposed to the 

medium, the fraction of undissolved API in solution increases sharply, as it becomes 

available to be dissolved. At one hour, it is possible to see that there is still undissolved 

API.  

 

  

Figure 9 - Fraction of API in the tablet (blue), undissolved in solution (orange), and dissolved (dark green). 

 

3.3 Multivariate Data Analysis and PLS Models 

PLS models were developed to correlate blend spectra and tablet spectra to the equation 

parameters 
𝑑𝑟

𝑑𝑡
, 𝑧, and 𝐾. As shown in the previous section, these parameters were 

individually optimized for each tablet, with two tablets produced from each blend.  

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1

A
P

I D
is

so
lv

ed
 (

%
)

Time (h)

Modified N-W Model

B8 SF0.75

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1

A
P

I D
is

so
lv

ed
 (

%
)

Time (h)

Modified N-W Model

B8 SF0.85

0

20

40

60

80

100

120

140

160

180

0 0.2 0.4 0.6 0.8 1

AP
I (

m
g)

Time (h)

API in tablet (mg) API undissolved in solution (mg) API dissolved (mg)



24 

In order to calibrate the PLS blend models, the mean values of  
𝑑𝑟

𝑑𝑡
, 𝑧, 𝐾 were 

calculated for tablets with the same formulation but different solid fractions. 

For the blend spectra, preprocessing involved applying a Savitzky-Golay 2nd 

derivative combined with standard normal variate (SNV) correction. No specific spectral 

region was excluded during this preprocessing. For the tablet spectra, preprocessing 

was performed using SNV. Additionally, the spectral region from 1640 to 2799 cm⁻¹ was 

excluded, as it was deemed to contain noise. 

 

3.3.1 z-Factor Model 

 

Blends 

Figures 10a and 10b show PLS score plots from the z-factor model obtained with 

blend data, colored according to API (10a) and lubricant content (10b), respectively. 

Though there are no obvious clusters, API content influences score distribution along 

PC1, while PC2 separates blends with different lubricant content. The percentage of 

disintegrant did not seem to be explained by any component. There are no outliers 

apparent.  

Figure 11 shows the regression line for observed versus predicted values of 𝑧 for the 

blend data. The model was built using four components, with the following performance 

metrics (table 4): 

R²X: 0.629 

R²Y: 0.971 

Q²: 0.779  

The number of components for all models was chosen based on the R²Y, Q² and 

RMSEcv (more information in annex A1). Points with the same color represent spectra 

replicates of each blend. It is noticeable that the replicates for blend B1 exhibit less 

precise predictions for the 𝑧 parameter, indicating potential variability in the spectral data 

for this blend. This variability could have been introduced due to incorrect placement of 

the probe or capturing information from the plastic container, for example. To avoid this, 

more replicates of each blend spectra should have been acquired.  
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a 

 

b 

 

Figure 10 - Score plot for the z-factor blends model. (a) Colored according to API content. Green: 40% API. 
Red: 50% API. (b) Colored according to lubricant content. Green: 0.5% lubricant. Red: 1.5% lubricant.  
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Figure 11 - Observed vs. Predicted regression line for the z-factor blends model. 

 

 

Tablets 

Figures 12a and 12b represent the score plots also from the z-factor model but based 

on tablet data. Similar to the results from the blend data, disintegrant content did not 

show an apparent influence on the score distribution in any of the principal components. 

However, unlike the blend model, lubricant content did not significantly impact the score 

distribution in the tablet model. In the case of tablets, API content and SF level appear 

to be the variables most correlated to the dissolution parameters. PC2 is influenced by 

the API content, while SF level seems to influence the distribution both along PC1 and 

PC2. In all of the scores plots for tablets it is possible to identify four clusters: low API%-

low SF, high API%-low SF, low API%-high SF, and high API%-high SF. 

The model was built using five components, with the following performance metrics 

(table 4): 

R²X: 0.838 

R²Y: 0.989 

Q²: 0.825 

Figure 13 shows the regression line of observed versus predicted values of 𝑧 for 

tablets. Data points are tightly clustered along the regression line.  
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a 

 

b 

 

Figure 12 - Score plot for the z-factor tablet model. (a) Colored according to API content. Green: 40% API. 
Red: 50% API. (b) Colored according to SF level. Green: 0.75. Red: 0.85. 
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Figure 13 - Observed vs. Predicted regression line for the z-factor tablet model. 

 

3.3.2 Erosion Model 

 

Blends  

Score plots of the erosion model were very similar to the z-factor model. Blends with 

different ibuprofen content seem to be more distributed along PC1, while PC2 separates 

blends with different lubricant content. This indicates that blend spectra might capture 

information on API and lubricant well and that such information has good correlation with 

the dissolution parameters.  

Only slight differences are apparent in the distribution of scores. These differences 

are due to how each PLS model captures the relationships between the spectral data 

and the respective Y variables (the dissolution parameters). Different Y variables will 

cause the model to highlight different spectral regions and blend/tablet characteristics, 

leading to distinct score distributions, even when the underlying spectra are the same. 

To make this work less extensive, the plots can be consulted in annex A4.  

The model was built using four components, with the following performance metrics 

(table 4): 

R²X: 0.63 

R²Y: 0.985 

Q²: 0.845 
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Figure 14 - Observed vs. Predicted regression line for the erosion blends model. 

 

The regression line for observed versus predicted values of the parameter 
𝑑𝑟

𝑑𝑡
 for 

blends are shown in figure 14. As can be seen, data points are tightly clustered along 

the regression line.  

 

Tablets  

Score plots of the erosion model for tablets can be consulted on annex A4. The scores 

distribution seems to vary more amongst tablet models than blend models. This could 

be because the process of compression introduces more variability in the spectra across 

different tablets. 

Figure 15 shows the regression line of observed versus predicted values of 
𝑑𝑟

𝑑𝑡
 for 

tablets. Data points are tightly clustered along the regression line. The model was built 

using five components, with the following performance metrics (table 4): 

R²X: 0.842 

R²Y: 0.993 

Q²: 0.917 
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Figure 15 - Observed vs. Predicted regression line for the erosion tablet model. 

 

3.3.3 Modified N-W Model 

 

Blends 

Score plots for the modified N-W model can be consulted in annex A5. The regression 

line for observed vs. predicted 𝐾 values for the blends model is shown in figure 16. In 

this case, blend B5 appears to have the least precise predictions and overall, the data 

points are not as tightly clustered along the line. The model was built using four 

components, with the following performance metrics (table 3): 

R²X: 0.626 

R²Y: 0.975 

Q²: 0.762 
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Figure 16 - Observed vs. Predicted regression line for the modified N-W blends model. 

 

Tablets 

Figure 17 shows the regression line of observed versus predicted values of 𝐾 for 

tablets. Data points are tightly clustered along the regression line. The model was built 

using five components, with the following performance metrics (table 3): 

R²X: 0.84 

R²Y: 0.993 

Q²: 0.876 

Scores plots for the modified N-W model are shown in annex A5.  

 

 

Figure 17 - Observed vs. Predicted regression line for the modified N-W tablets model. 

 

3.3.4 Assay Prediction 

PLS models were also built to correlate spectral data with API content in order to 

evaluate the ability to predict the assay content in the blends and tablets. Figure 18a 

shows the observed vs. predicted API content in blends. For blends with 40% API 

content, predictions ranged from 38.5% to 41.5%, while blends with 50% API content 

showed predictions ranging from 48% to 51.5%. 

Similarly, figure 18b depicts the observed vs. predicted API content in tablets. For 

tablets with 40% API content, predictions ranged from 39% to 41.5%, while tablets with 

50% API content showed values between 48% and 52.5%. Two of the data points 

showed a higher prediction error but due to formatting issues with the plot, it is not 

possible to determine which specific tablets correspond to these points. 
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a

 

b 

 

Figure 18 - Observed vs. Predicted regression line for the assay models of (a) blends, and (b) tablets. 

 

These models were also used to predict the API content in the B9 blend and tablets, 

which have a different formulation than the calibration set (45% of ibuprofen). The mean 

API content predicted by the models was 41% for the B9 blend and 45% for the B9 tablet, 

meaning that the model that uses blend spectral data has less precise predictions.  

 

3.4 Overview of Model Performance  

To assess how well each equation fits the experimental data, the f1 (difference factor) 

and f2 (similarity factor) were calculated. These factors are typically used to compare the 

dissolution profiles of a reference product with a test product. In this case, they were 

used to compare experimental dissolution profiles with their corresponding modeled 

profiles. 



33 

The results, presented in table 3, indicate that all equations provide a good fit, with 

f1≤15 and 50≤f2≤100. Among the models, the modified Noyes-Whitney (N-W) equation 

demonstrates a slightly better fit, achieving the lowest f1 values and the highest f2 values. 

Both the erosion and z-factor models exhibit a similar performance.  

Thus, regarding curve-fitting, the N-W model shows the best results, meaning the 

obtained equation parameters better represent the experimental data.  

 

Table 3 - Calculated difference factor (f1) and similarity factor (f2) of the curve-fitted profiles. 

 

 

Table 4 summarizes the performance metrics of the six models. The data indicates 

that models built using tablet data exhibit higher predictive power compared to those built 

with blend data.  

It is worth noting that the R2(X) in models built with blend data is significantly lower. 

The R2(X) statistic evaluates how well the model captures the information of the 

independent variables. In this case, the components might not summarize well the 

variability in the X matrix because of the higher complexity and noise of blend spectral 

data. Also, blend data may have a less direct relationship to the equation parameters 

than tablet spectra, since the dissolution process is closely related to properties of the 

final tablet (e.g. the solid fraction level).  

Despite all models presenting a high Q2, it is the erosion tablet model that shows the 

highest value. The Q2 statistic is especially important, as it is a measure of the model’s 

predictive ability. It indicates how well the models will predict new or unseen data.  

For all models, the R2(Y) values are consistently high, demonstrating a good fit to the 

training data. Among the models, the erosion model—of blends and tablets—shows the 

best performance across all evaluated parameters.  

 

 

 

 

 

 

 

Model Mean f1 (%) Mean f2 (%) 

z-Factor 3.17 ± 1.06 71.87 ± 7.42 

Erosion 2.98 ± 1.13 73.79 ± 7.95 

N-W 2.09 ± 0.93 83.44 ± 6.80 
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Table 4 - Performance metrics for all the models. 

 

 

3.5 External Validation  

External validation was carried out using the center point of the DoE (Batch B9, table 

1, figure 2). This batch differs from the calibration data in both a different formulation and 

a SF level. Instead of curve-fitting, the rate parameters of each equation were predicted 

using the PLS models developed previously. The mean value for each model was used. 

Six spectra replicates were obtained from the blend, and two replicates were obtained 

from the tablet (front and back).  Additionally, the mean predicted assay values for the 

B9 blend and tablet were included as input for predicted profiles. The confidence interval 

was calculated based on the RMSEcv given by SIMCA. Table 5 summarizes the 

predicted rate parameters for batch B9, along with the corresponding RMSEcv.  

It is important to highlight that the real API content of batch B9 was 45% (180 mg). 

However, blend spectra used to build the PLS model may not have fully captured this 

information, leading to an underprediction. Table 5 provides all the predicted values 

obtained from the assay models. 

 

Table 5 - Individual and mean rate parameters, and RMSEcv values obtained in SIMCA for blend and tablet 
models. 

 

 

Model Preprocessing 
No. of 

components 
R2(X) R2 (Y) Q2 

Blends 

z-Factor 

2nd Derivative, 
SNV 

4 0.629 0.971 0.779 

Erosion 4 0.630 0.985 0.845 

N-W 4 0.626 0.975 0.762 

Tablets 

z-Factor 

SNV 

5 0.838 0.989 0.825 

Erosion 5 0.842 0.993 0.917 

N-W 5 0.840 0.993 0.876 

 Blends Tablets 

Individual 

𝒛 𝒅𝒓
𝒅𝒕⁄  𝑲 𝒛 𝒅𝒓

𝒅𝒕⁄  𝑲 

9.19 0.32 0.60 10.16 0.34 0.65 

9.06 0.31 0.62 11.61 0.41 0.75 

9.55 0.33 0.61 ----- ----- ----- 

9.84 0.34 0.59 ----- ----- ----- 

9.12 0.32 0.53 ----- ----- ----- 

9.95 0.32 0.61 ----- ----- ----- 

Mean 9.45 0.33 0.59 10.89 0.37 0.70 

RMSEcv 0.86 0.03 0.07 1.55 0.05 0.12 
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Table 6 - Assay content predicted for blend B9 and tablet B9, and respective mean values. 

 

 

 Figures 19, 20, and 21 compare the experimental dissolution profile of tablet B9 with 

the profiles predicted using the blend and tablet models.  

Similar to the previous results, the dissolution of tablet B9 did not reach 100% (only 

160 mg of API were released from the theoretical 180 mg of API content). 

Since the z-factor and erosion models assume 100% release, it was necessary to 

adjust the dissolution profile according to equation 12. However, this adjustment was 

only performed to the dissolution profile compared with the z-factor and erosion models 

applied to the tablets. It was not necessary to apply if for the blend models, because 

coincidently the assay from the blend was underpredicted (41% API content instead of 

the theoretical 45%). 

 

 

a b 

Figure 19 - External validation of the z-factor model. (a) Predicted from blend data. (b) Predicted from tablet 
data. Predicted dissolution profile (dark blue), confidence limits (red), experimental dissolution profile 
(green). 

 

 Blends Tablets 

Individual (%) 

37.9 45.3 

39.6 45.2 

40.4 ----- 

41.8 ----- 

41.7 ----- 

42.7 ----- 

Mean (%) 40.7 45.2 

Mean (mg) 165.2 183.6 
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a b 

Figure 20 - External validation of the erosion model. (a) Predicted from blend data. (b) Predicted from tablet 
data. Predicted dissolution profile (dark blue), confidence limits (red), experimental dissolution profile 
(green). 

 

a  b 

Figure 21 - External validation of the modified N-W model. (a) Predicted from blend data. (b) Predicted from 
tablet data. Predicted dissolution profile (dark blue), confidence limits (red), experimental dissolution profile 
(green). 

 

To evaluate once again the fitting of each model to the experimental data, f1, f2, and 

the RMSE of the profiles of batch B9 were calculated (RMSEdiss).  Additionally, the 

models were curve-fitted to the experimental dissolution profile to compare the fitted 

parameter with the model parameter predicted from the PLS model (RMSEpar). The 

results are presented in table 7.  

 

Table 7 - Calculated difference factor (f1), similarity factor (f2), and RMSE of the external validation. 

 

 

 Blend  Tablet  

Model f1 f2 RMSEdiss RMSEpar f1 f2 RMSEdiss RMSEpar 

z-factor 4.46 63.74 5.22 0.865 4.89 63.00 5.40 0.572 

Erosion 3.46 71.69 3.54 0.026 4.16 67.09 4.44 0.074 

Modified N-W 3.40 70.75 3.71 0.074 7.64 59.41 6.41 0.034 
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All of the profiles pass the criteria of f1≤15 and f2≥50, demonstrating a good fit. Overall, 

the profiles predicted from blend data showed results closer to the mean f1 and f2 values, 

even if they fall outside the standard deviation range. The erosion and modified N-W 

(from blend) presented the best fit and had a very similar performance between them. 

The z-factor and erosion models showed fairly consistent results across blend and tablet 

data. Of all six models, the modified N-W profile predicted with tablet data showed the 

poorest fit. This can also be observed in figure 21b. However, it should be noticed that 

this might be due to the incomplete dissolution of the tablet, as the predicted profile is 

also based on the input of the predicted assay – about 45% of API content. Nonethless, 

in the case of the tablet disintegration being significant, the modified N-W might be a 

better option as the approximate 
𝑑𝑟

𝑑𝑡
 was determined from the disintegration time.  

The RMSE of the B9 parameters (RMSEpar) predicted from blend models are in 

accordance with the RMSEcv, which indicates there was no overfitting. For tablet 

models, the RMSE of the parameter was slightly lower than the RMSEcv.  

It is important to note that the external validation was performed with one sample only. 
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4 Final Considerations 

While the results from the calibration of models and external validation are promising, 

they bring forward several questions.  

Namely, the ability to accurately predict the assay content in blends/tablets is relevant, 

as this is a key input in all three equations tested. Inaccuracies in assay predictions 

compromise the reliability of the dissolution predictions. Thus, application of these 

dissolution models in an actual tableting line requires a validated model for assay 

prediction. NIR or Raman probes can be installed either in the feed frame of a 

compression machine (blend data) or tablet data can be acquired by an operator at-line. 

In this work, models using both blend and tablet spectral data were developed. 

Equally important is the development of a robust dissolution method. For this work, 

none of the tablets tested achieved 100% of API dissolved. This was addressed by 

adjusting the dissolution data to the theoretical amount of API in the tablet, to avoid an 

offset between curve-fitted and experimental profiles. The third model, the modified N-

W, does not require this adjustment as sink conditions are not assumed and so the API 

might not dissolve completely. Typically, however, this would not be a problem as 100% 

dissolution is a requirement.  

A broader DoE, encompassing wider variations in formulation, should also be 

developed to calibrate the models. Additionally, different material lots and attributes, 

such as API particle size should also be considered. Regarding the impact of process 

parameters, only the compression force was evaluated, as tablets were produced with 

different solid fractions. This impact should be further assessed by varying furthermore 

the compression force. Other process parameters can also have an impact in the 

dissolution profile, such as blender speed, or paddle speed in the feed frame, which can 

promote over lubrication or impact the tablet attributes of strain sensitive formulations. 

Thus, product and process knowledge should also be acquired in order to understand 

which factors impact dissolution the most and to find the design space in which the 

dissolution profile remains within spec. In order to apply the dissolution model for real 

time release testing, the model must be able to predict the dissolution profile from 

batches within specification and also non-conforming batches. 

Furthermore, external validation should be performed with a larger sample set and 

the MVAC must be defined. 

Most of these points and requirements are further discussed in the FDA’s article on 

RTRT-D. The article describes some expectations from regulatory entities regarding the 

development and application of dissolution models. For more information and insight, the 

reader is directed there.  
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5 Conclusions 

In this thesis, a methodology for developing dissolution models at a laboratory scale 

was defined. Dissolution profiles were modelled by three different first-principles 

equations. Spectroscopic data was acquired from powder blends and directly 

compressed tablets and used to develop PLS models that correlated the spectral data 

to determined equation rate parameters. External validation with a small sample was 

performed. Regarding the calibration set, results from the PLS models showed good 

prediction capability and the results from the external validation agree with that. The 

dissolution profiles of batch B9 obtained with predicted parameters and assay content 

showed a good fit to the experimental data.  

For a future work, suggestions include proper development of a dissolution method 

and an assay model, a more in-depth study of the process of tablet dissolution, a broader 

DoE, a larger sample set for external validation, and definition of the MVAC.  
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A2.  Summary of Fit and RMSECV – Erosion 
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A3.  Summary of Fit and RMSECV – Modified N-W 
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A4.  Score Plots (Erosion Model) 
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A5.  Score Plots (Modified N-W model) 
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