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Abstract

A numerical method, which only uses single-component experimental data, was developed to
predict the compaction behaviour of pharmaceutical powder mixtures. Material properties of
single-component powders were described using the density-dependent Drucker-Prager Cap
(dDPC) model. Mixing rules for the material properties were defined by applying the isostress
condition within the material. Hereafter, the mixing rules were used to obtain the elastic
and dDPC model parameters for various powder mixtures. These model parametrisations
were implemented into a Finite Element Method (FEM) calculation using the commercial
code Abaqus 2019 with a user-defined subroutine. Mixtures of micro-crystalline cellulose
(MCC, plastic) and dibasic calcium phosphate dihydrate (DCPD, brittle) powders were used
to validate the parametrisations and the mixing rules. Parametrisations of the dDPC model
were extracted from experimental data using an automated work-flow that is robust and
requires minimal user input. FEM simulations that used parametrisations derived directly
from experimental data predicted the experimental compaction curves with a mean error of
2.5% of the maximum compaction pressure. Parametrisations derived using mixing rules
resulted in predictions for powder mixtures with a mean error of 4.8%. Furthermore, stress
profiles displayed the same trend with respect to the composition of the tablet, regardless
of the parametrisation method. This numerical methodology can thus be used to predict the
compaction behaviour of binary powder mixtures without the need for any experimental
data except that of the single-component powders. Furthermore, the method may readily be
extended towards an arbitrary number of components to further accelerate the identification
of pharmaceutical powder mixtures that result in tablets with high structural integrity.
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Chapter 1

Introduction

1.1 Introduction

The tablet is the most popular dosage form within the pharmaceutical industry. This pop-
ularity stems from the many advantages of tablets, such as physical and chemical stability,
dosage precision, easy large-scale production, and patient-friendliness. However, not all
pharmaceutical compounds can easily be made into tablets. Tablet defects such as capping,
lamination, or chipping can occur (Fig. 1.1). Tablets can also be too porous or too dense,
causing either accelerated or poor release of the active pharmaceutical ingredients (APIs).
Defective tablets are costly because of production delays or product recalls. It is therefore of
major interest to try and prevent these tabletting defects.

Fig. 1.1 Common defects in tablets: (a) chipping, (b) lamination, and (c) capping. Figure
taken from Baroutaji et al.[1]

The frequency of tabletting defects depends strongly on the formulation and production
process. The most common production method is direct compression. The APIs are formu-
lated into a powder together with other components, such as excipients or colourings. The
powder is then compacted using a tabletting press. A die is filled with the powder and two



2 Introduction

punches are used to compact the powder into a tablet. Even for a single formulation, varia-
tions in compaction pressure, compaction speed, and punch shape can affect the structural
integrity of the tablet. Because of the large number of tuning parameters, experimental trial
and error is a costly undertaking. This has made computational methods increasingly popular
for troubleshooting and design of the tabletting process.

Although the powders are granular materials, typically containing particles with a size
of tens to hundreds of micrometers, continuum models have already been successful in
predicting potential tablet defects. A finite-element method (FEM) can thus be used to
simulate the entire compaction process on a full-sized scale and help the design of the
tabletting process. To do so, FEM models need to have an accurate representation of all
material properties. The mechanical behaviour of the powder is thus typically defined
using an elasto-plastic constitutive model, such as the density-dependent Drucker-Prager
cap (dDPC), crushable foam, or modified Cam-Clay model. Experimental data can then be
used to parametrise the model and indeed get a FEM model that closely mimics experimental
results. It is this approach, in particular with the dDPC model, that has had success in
predicting the compaction curve, defects, and even the tensile strength of tablets.

Studies in the past have considered either pure excipients or a specific powder formulation
or mixture. The current approach therefore requires experimental data, and sometimes ad
hoc fitting procedures, for each and every mixture. Nonetheless, a wide range of powder
mixtures may be considered during the development process, in particular mixtures in which
the ratio of two components is changed. Parametrising the dDPC model with experimental
data of each and every mixture becomes infeasible because this requires large quantities of
experimental data. It is thus most desirable to have a method that only uses single-component
material parameters to predict the behaviour of powder mixtures.

The aim of this thesis is to develop a method to i) parametrise the dDPC model for
FEM simulations of pure materials in an automated manner and ii) use single-material
parametrisations to predict the dDPC model parameters, and thus the compaction behaviour,
of powder mixtures.

Chapter 2 provides a literature review the application of FEM to pharmaceutical pow-
ders. Particularly, developments with respect to the dDPC model and extension thereof
are considered. Chapter 3 describes the experimental methods. Chapter 4 explains how
the experimental data was used to parametrise the dDPC model. Chapter 5 then extends
the parametrisation to describe the compaction behaviour of powder mixtures using only
single-component experimental data. Chapter 6 describes the FEM simulations of the powder
compaction process. Chapter 7 discusses the results of the simulations and compares these to
experiment. Finally, the conclusion and outlook are given in chapter 8.



Chapter 2

Literature review

The aim of this chapter is to summarise literature on FEM simulations of uniaxial compaction
and provide a suitable starting point for developing a framework to predict powder-mixture
behaviour. A proper parametrisation of the powder’s material properties is vital for any FEM
framework regarding powder compaction. Although the modified Cam-Clay model is also
used regularly, the Drucker-Prager cap (DPC) model is by far the most widely used model
for describing the properties of pharmaceutical powders in FEM simulations. It is one of the
few models that only needs a limited number of experiments to fully define the behaviour
of a granular material and gives a reasonable accuracy. For these reasons, the DPC model
with its developments and applications are discussed in detail. The last part of this review
presents an overview of the current methods for predicting mixture properties.

This review limits itself to the discussion of uniaxial compaction and crushing of
tablets. Roll compaction is another popular method within the pharmaceutical industry
but is discussed elsewhere.[2–6] All but one of the studies used the commercial Abaqus
software (Dassault Systèmes, Vélizy-Villacoublay, France) to do FEM simulations of powder
compaction.[7] The other study used Ansys (Ansys Inc., Canonsburg, USA) instead. [8, 9]
Furthermore, all studies assumed radial symmetry with tablets represented as a 2D slice by
using axisymmetric elements. The parametrisation methodology itself is typically discussed
within the methods section of the papers but can also be found in dedicated papers.[10, 11]
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2.1 The Drucker-Prager cap (DPC) model for compaction
of pharmaceutical powders

2.1.1 Model introduction and initial validation studies

The first published use of the DPC model to simulate powder compaction was by Michrafy
et al. (2002,2003,2004).[12–14] Their FEM simulations gave predictions for the stress
and density profiles within the tablet. This provided an initial tool for the identification of
potential tablet defects. For example, Michrafy et al. predicted that capping may occur in
lactose tablets because of the presence of stress bands going from the centre to the tip of the
tablet. Wu et al. (2005) subsequently repeated their studies in greater detail, also simulating
lactose tablets, and confirmed their predictions.[15] Experimentally produced lactose tablets
indeed showed capping and X-ray computed tomography experiments confirmed crack
development along the predicted stress bands. The potential of the DPC model to assist in the
tabletting process development was therefore immediately demonstrated, especially given
that these parametrisations of the DPC model used only uniaxial compaction data.

2.1.2 Extension to density-dependent material properties

The original DPC model still had the predominant shortcoming that material properties
did not depend on the density of the powder. This shortcoming was also hypothesised to
be responsible for the excessive elastic recovery of some simulated tablets.[12, 16] The
density-dependent DPC (dDPC) model was first implemented by Sinka et al. (2003) and
seemed to improve density predictions.[17] A comparative study by Sinha et al. (2010) later
confirmed that the dDPC indeed gives more accurate predictions for the density profile.[18]

2.1.3 Studies on variations in punch geometry and friction

Sinka et al. (2003) demonstrated and experimentally confirmed that friction was shown to
have a pronounced effect on the final density distribution of the tablets. The trend between
friction and the density distribution inverts at some point. Conclusions regarding the effect
of friction could therefore not be generalised.

Wu et al. (2008) followed up on their previous studies in 2005 and studied lactose
tablets again using the DPC model while considering variations in friction, punch geometry,
compaction profile, compaction speed, and final thickness of the tablet.[19] However, none
of the considered variations were able to completely avoid the development of intense stress
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bands and thereby avoid potential capping. This already implied that models would eventually
have to be expanded to consider changes in the powder composition as well.

Han et al. (2008) performed a study similar to Wu et al. (2005) but with the dDPC
model and micro-crystalline cellulose (MCC).[20, 21] In all cases, large stresses were
observed near the edge of the tablet upon ejection, caused by the radial elastic recovery
of the tablet. Furthermore, the observed stress and density distributions supported the
experimental observation that concave tablets show more capping but less chipping than
flat-faced tablets. Kadiri and Michrafy (2013) did a similar study and found that capping
tendency indeed increases as the radius of curvature decreases.[22] However, a relatively high
friction coefficient of 0.4 was used and the trend may not hold for lower friction coefficients.
An extensive study on the effects of friction and punch geometry by Krok et al. (2014)
confirmed this.[23] Using punches that are more concave or increasing the friction resulted
in increased densities near the die wall. But the optimum punch shape depends on the
friction and material. The absence of a general trend leads to the conclusion that case-by-case
considerations are necessary when trying to prevent capping.

Several lower punches with protrusions (cylindrical, hemispherical, and conical) were
also investigated by Han et al. (2011).[24] Density and stress distributions were in qualitative
agreement with X-ray computed tomography and 2D-SAXS data. Moreover, discolouration
of some tablets at high-density regions suggested scorching due to internal dissipation by
granule deformation or friction, suggesting that modelling thermo-mechanical behaviour
may also help predicting defects.

2.1.4 Application in 3D crushing simulations

Krok et al. (2014) tested the validity of representing 3D tablets with 2D axisymmetric slices
and found that the error in compaction pressure was less than 1%.[23] Nonetheless, a number
of studies did consider 3D tablets because of tablet geometries or numerical experiments
without radial symmetry. The first was Klinzing et al. (2010), who considered the uniaxial
compaction of capsule-shaped tablets of MCC.[25] Predicted density distributions were in
good agreement with X-ray computed tomography experiments. This underlines that both
2D and 3D representations using the dDPC model are valid.

Shang et al. (2x 2013) used the dDPC model in 3D to study the diametrical crushing
of tablets with different shapes.[26, 27] Various failure criteria were compared assuming
a tablet of uniform density. A maximum principal stress on the diameter that exceeds the
material tensile strength was found to be the most reliable failure criterion. X-ray computed
tomography showed that the failure patterns predicted using this criterion corresponded with
experimental failure patterns. These studies proposed that these methods can be used to
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replace empirical equations when predicting the breaking force for tablet with more complex
shapes.

Furukawa et al. (2015) improved on the aforementioned studies.[28] To account for
density variations within the tablet, the compaction process was simulated before simulating
a diametrical crushing test. After ejection, two plates were used to crush the tablet. Active
yielding (Abaqus option AC YIELD) of the mesh elements was then used to track the
development of failure zones. When yielding started near the centre of the tablet this resulted
in capping or lamination, whereas yielding near the periphery resulted only in a crack in the
direction of force. Experimental high-speed camera observations confirmed the predicted
failure patterns. These studies show that the dDPC model also has the potential to predict the
exact point of failure instead of only qualitative comparisons.

2.2 Improvements of the density-dependent DPC model

2.2.1 Parameter sensitivity studies

Despite the aforementioned successes, a number of shortcomings of the DPC model have
also come to light, together with various attempts to compensate for them. Sinha et al.
(2010) performed a sensitivity study on the DPC model parametrisation for lactose and
micro-crystalline cellulose (MCC) by varying the cohesion and friction angle.[16] During
decompression, extreme dilation of the tablet and poor convergence were observed for low
cohesions (≤ 0.1 MPa) or moderate cohesion (1 MPa) with low friction angles (≤ 45◦). It was
concluded that the dilation and convergence issues are caused by improper parametrisation
of the cohesion and friction angle, which cause excessive shear yielding of the tablet during
recovery. Moreover, some tablets do not show shear failure during the compaction process,
which makes it impossible to determine the cohesion and friction angle with only uniaxial
compaction experiments. The introduction of tensile strength (or crushing) experiments to
define the shear failure line by Sinka et al. (2003) addressed these concerns.[17] Another
concern was expressed by studies by Mazel et al. (2x 2014) who used FEM and tensile
strength experiments to study shear failure in tablets.[29, 30] They showed that the Drucker-
Prager failure criterion is not optimally suited for describing shear failure during uniaxial
compression because it underestimates the failure stress. The Drucker-Prager criterion has
nonetheless remained the standard due to its practicality.

The implementation of the correct elastic behaviour of the tablets appears to be a recurring
problem. The original DPC model showed excessive elastic recovery, which was subsequently
resolved by implementing the dDPC model. However, even for the dDPC model problems
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remain. Klinzing et al. (2010) reported that simulations overestimated the the residual stress
in the tablet and attributed this to the model not capturing the nonlinear elastic recovery of
the tablet.[25] Among others, Diarra et al. (2012) reported that experimental compaction
curves showed a nonlinear decay of the compaction pressure whereas FEM simulation
predicted a linear decay.[31] The authors concluded that nonlinear elasticity laws (i.e. a
non-constant Young’s modules and Poisson ratio) are needed to properly capture the pressure
decay during decompression. Bilinear elastic parameters were already introduced by Han et
al. (2008), one set of parameters for low pressures and one set for high pressures. [20, 21]
The compaction simulations seem to display a nonlinear decay of the compaction pressure
but residual pressures were not reported, making it unclear if using bilinear elastic parameters
resolved both issues. The procedure by Han et al. also warrants some scepticism because the
low-pressure elastic parameters are determined using the last part of the decompression stage,
which is known to cause failure in some tablets. A better procedure for determining nonlinear
elastic parameters may be that described by Mazel et al.[32] This procedure uses adjusted
uniaxial compaction experiments and would require minimal effort if compaction curves are
already being generated. However, no published study on simulating tablet compaction has
implemented this procedure in their parametrisation yet.

Diarra et al. (2018) also reported a sensitivity study on the effects of changing the
linear elastic parameters by ±20%.[33] Under constant compaction pressure, changes in the
Young’s modulus had negligible effect on the final thickness as well as the density and stress
distributions of the tablets, only the thickness during compaction shifted. Higher Poisson’s
ratios resulted in thicker tablets, higher axial-to-radial stress transmission, and lower residual
radial stress. The radial stress distributions after decompression were strongly affected as a
result of the differences in the magnitude of residual stress. This underlines the importance
of properly parametrising the Poisson’s ratio, as defects during decompression and ejection
are often correlated with die-wall pressure.

2.2.2 Parameter extrapolations

In the study by Diarra et al. (2012), simulated compaction curves showed a considerable offset
with respect to the experimental data because the parametrisation started at a higher density
than the initial powder.[31] This made it evident that extrapolating the dDPC parameters
to lower densities is necessary. Extrapolation of dDPC model parameters was extensively
addressed by Garner et al. (2015) [34] A method was proposed for estimating dDPC model
parameters outside the range of densities that can be achieved in compaction experiments.
For die-compaction experiments, the low-density extrapolations had negligible effects on
the compaction curves and density profiles for tablets with final relative densities above 0.6.
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Nonetheless, the offset observed by Diarra et al. does demonstrate that an extrapolation
is indeed necessary.[31] Furthermore, the low-density extrapolations do become important
for complexer geometries and roll compaction where more shearing occurs. High-density
extrapolations always had a major effect on the final density profile of the tablet and must be
chosen carefully. The proposed extrapolation method constrains the relative density to the
physical limit of unity and seems to give satisfactory results.

2.2.3 Visco-elastic behaviour

Two experimental observations have also motivated authors to implement visco-elastic
behaviour besides the dDPC model. First, the minimum tablet thickness does not always
occur at the pressure maximum. And second, tablet properties depend on the compaction
speed and dwell time of the punches (i.e. the delay between compression and decompression).

Diarra et al. (2013) therefore introduced creep using standard power laws for the time and
strain hardening as proposed by the Abaqus software.[35] Parameters associated with these
laws were determined through numerical optimization. Creep model improved the FEM
results, especially during unloading, and captured the first observation mentioned. Deviations
in the final part of the recovery phase indicated that other creep models may however be
more suitable.

Ohsaki et al. (2020) proposed a coupling of the Peryna model to the dDPC model to
include visco-plastic behaviour.[9] This allowed FEM simulations to capture the effect of
punch velocity on the tabletting performance. The model was parametrised using exper-
imental data of uniaxial compaction at different velocities. They observed that a higher
compression speed resulted into a higher capping frequency and less plastic deformation.

Although not related to visco-elasticity, three studies also added thermo-mechanical
coupling.[36, 25, 37] Upon increasing the friction and compaction speed, the maximum
temperature shifts from the centre to the top edge of the tablet. Punch shape, and thus
deformation, was by far the most dominant factor determining the maximum temperature
and possible tablet burn.

2.3 Predicting compacted properties of powder mixtures

The last part of this literature review aims to find a proper ansatz for a framework to predict
the compaction behaviour of mixtures. The majority of studies use statistical, algorithmic, or
machine-learning models to predict the mechanical properties of tablets made using powder
mixtures.[38–43] Although all of these studies describe a predictive model, these models
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require large quantities of experimental data to feed to non-physical models. This makes
them less suitable for a bottom-up approaches or when little data is available. Preferably, the
requirements on experimental data are minimized by incorporating the appropriate physics.

Queiroz et al. (2019) proposed a more physical model based on percolation theory.[44]
The model is able to predict the critical fraction of API that can be put into an excipient
before the excipients’ mechanical properties start to change significantly, typically indicating
deterioration of tabletting properties. However, the model does not distinguish between
differences in the final tablet density and is only defined for binary mixtures. This limits the
potential for this model to help develop a generalised mixing model for dDPC parameters.

Another more physical model, based on volumetric mixing rules, was proposed by Wu
et al. (2005, 2006) to predict the tensile strength of mixed-powder tablets.[45, 46] The
Ryshkewitch-Duckworth equation was used to relate the tensile strength to the relative
density of single-component tablets. The constants of the equation for mixtures were
then predicted by weighing the pure-component constants by the volume fraction of the
component in the mixture. The volume fractions were estimated using the pure-component
true densities. Experimental data demonstrated the validity of the model for binary, ternary
(three-components), and quaternary (four-component) mixtures of micro-crystalline cellulose,
hydroxypropylmethyl cellulose, starch, and lactose monohydrate. Since the model assumes
equal particle sizes, the material grades were chosen to have similar particle sizes. This
hints that volumetric mixing rules might provide a promising start for mixing dDPC model
parameters.

Reynolds et al. (2017) later showed that a volumetric mixing model can also be used to
predict the compaction curves of mixed-powder tablets.[47] At a given stress, the compaction
density of a mixture was predicted as the volumetric mean of the single-component densities.
Similar to Wu et al., volume fractions were computed using the pure-component true densities
and material grades were chosen to have similar particle sizes. Binary and tertiary mixtures
of micro-crystalline cellulose (plastic), mannitol (intermediate), and anhydrous dicalcium
phostphate (brittle) were used to validate the model. The model inherently assumes that the
stress is homogeneous throughout the tablet for all materials (i.e. the isostress assumption
for composites). This provides another starting point for a mixing framework.





Chapter 3

Experiment set-up and preprocessing

The first step towards simulating powder compaction is acquiring the experimental data. This
chapter describes the experimental data that is needed to later parametrise the FEM model.
Raw experimental data was provided by Novo Nordisk whereas all analysis on the data was
done by the author.

3.1 Choice of tablet materials

The materials chosen for this study are micro-crystalline cellulose (MMC) of grade Avicel
PH200 and dibasic calcium phosphate dihydrate (DCPD) of grade Emcompress premium.
MCC is a typical excipient for tablet formulations and shows strongly plastic behaviour.
DCPD is a material showing elastic and strongly brittle behaviour, much more akin to typical
APIs.[48] Material grades were chosen to have similar particle-size distributions (see Fig.
3.1). Binary mixtures consisted of 10%-90%, 20%-80%, 50%-50% of MCC and DCPD,
respectively. Mixtures were biased towards DCPD because the properties of MCC tend to
dominate the behaviour of the mixture.

3.2 Uniaxial tablet compaction

Uniaxial powder compaction is the most important experiment as it closely resembles the
tablet production process. These tests are needed to define the basic material properties and
will be used for validation. For each mixture, tablets were produced for six to seven different
final tablet densities. Ten tablet were produced for each density. The range of densities for
the tablets was chosen to be as wide as possible but was limited by i) the minimum density
needed to produce a cohesive tablet and ii) the radial pressure limit of the die-wall sensor.
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Fig. 3.1 Particle diameters resulting from laser diffraction spectroscopy using a Malvern
Mastersizer 3000 (Malvern, Malvern, United Kingdom). The calculation of the diameters
assumes spherical particles. The inset shows the particle sizes at 10%, 50%, and 90% of the
volume of the cumulative distribution. Three experiments were done per material.

An illustration of the set-up can be seen in Fig. 3.2. Uniaxial compaction was done using
the Romaco Kilian STYL’One Evolution (Medelpharm, Beynost, France) equipped with a 80
kN load cell, an instrumented cylindrical die, and circular flat-faced punches with a diameter
of 11.28 mm. Before each compaction cycle, an external lubrication device was used to spray
magnesium stearate onto the die and punch surfaces to ensure that the tooling was sufficiently
lubricated. Powder was filled into the die using a force feeder, except for 100% MCC powder
where a gravity feeder was used. The amount of powder filled into the die was also adjusted
based on the target density such that the resulting thickness of the tablets was approximately
equal. Hereafter, the compaction cycle begins and generally consist of three stages. The first
stage is called the compression or compaction stage. The punches are brought together to
consolidate the powder into a tablet. The next stage is called the unloading or decompression
stage and is when the punches are moved apart again. The last stage is ejection, when the
bottom punch pushes the tablet out of the die. A double-ended compaction (DEC) profile
was used such that the punches moved in a V-shaped profile with a combined velocity of 0.4
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Fig. 3.2 A diagram showing the initial configuration of the powder and tooling. The stresses
acting on the powder during the compaction process are also shown. Note that the pressures
σT and σB have been defined in opposite direction to assure a non-zero compaction pressure.

mm/s, giving quasi-static conditions. The individual punches thus moved at a speed of 0.2
mm/s.

The following data results from a uniaxial compaction experiment: the total mass in the
die m, the positions of the top punch zT and bottom punch zB, the force on the top punch FT

and bottom punch FB, and the radial die-wall pressure σr. The mean pressures on the top and
bottom face of the powder, σT and σB, are then calculated by dividing the force by the face
area A of the punches. The compaction or axial pressure is then defined as

σz =
σT +σB

2
. (3.1)

Furthermore, the distance between the two punches is denoted as H. A correction was
applied to the punch positions because the punches slightly deform under pressure. Punches
were also positioned such that the die-wall pressure sensor is always in the middle. The
compaction density of the powder (including both elastic and plastic components) is then
given by

ρm =
m

HA
=

m
V

(3.2)

where V is the in-die volume of the powder.
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Fig. 3.3 An example compaction curve is shown for each material considered. At equal
compaction pressures, the compaction density increases as the content of DCPD increases.

3.3 Automated preprocessing

To process the results of the compaction experiment, it is necessary to define a starting
and ending point for each compaction curve. The chosen starting points also determine the
value of ρ0 in Eq. 3.15 and influence the calculated strain. An automated filtering method
was thus implemented to improve reproducibility and user-convenience. The pressure data
always starts with noise as the punches are not yet in contact with the powder. The standard
deviation ξ in pressure of the first 120 ms is calculated. The start of the compaction curve
is marked as the point where all points in the next 20 ms have a pressure above 6ξ . The
end of the compaction curve is marked by the first point that is 1) past the peak compaction
pressure, 2) below 10 MPa, and 3) has the standard deviation of the next 20 ms below 1.5ξ .
This preprocessing was applied to all compaction data. Fig. 3.3 and 4.3 show that the
preprocessing correctly selects compaction curves with minimal rejection of useful data.

There is a motivation for the difference in start and end criteria. The 6ξ threshold does
not work at the end because compaction curves sometimes end with a constant pressure of
a few MPa. Similarly, using the end criteria to define the start of the data would not work
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because a random series of noisy data already has a high chance to have a standard deviation
above 1.5ξ .

Precompaction is common in industrial settings but was not applied in the current study.
The scripts were therefore already adapted to accommodate for data where precompaction
has been applied. Precompaction means that the powder is slightly compacted and the punch
retreats again before the main compression cycle. The precompaction step interferes with the
parametrisation and is removed by only using data where the distance between the punches
is smaller than the minimum observed during precompaction.

3.4 Extension of compaction curves

Closely inspecting experimental compaction curves shows that the maximum compaction
density does not occur at the maximum compaction stress.[31, 35] The offset in compaction
density is small, about 0.004 g/cm3, but is problematic because decompression therefore
includes other behaviour than elastic recovery. Consequently, the compaction density is no
longer monotonically decreasing during decompression. The parametrisation, which uses
the slope of the decompression path, can thus result in near-infinite elastic moduli for some
line segments. To avoid this problem the experimental compaction curves are extended
before the parametrisation is applied (Fig. 3.4). This is done by fitting two linear splines
through the compression and decompression part of the compaction curve, respectively. For
decompression, the spline only uses data below 75% of the maximum compaction stress.
A new maximum compaction stress is then computed as the intersection of the two splines.
The procedure is iteratively repeated until the maximum compaction stress remains constant.
The resulting extension then replaces the part of the compaction curve that lies between the
original maximum compaction stress and the unloading point at 75% of the new maximum.
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Fig. 3.4 An example of the compaction-curve extension procedure. The procedure enforces
monotonicity of the decompression part of the compaction curve, which in turn ensures that
the Young’s modulus is always well-defined.

3.5 Quantitative comparison of compaction curves

To compare two different compaction curves quantitatively, the L1 loss function is introduced

L1 =

(∫
ρ

re f
end

ρ
re f
start

|σz −σ
re f
z ||dρm|

)
×

(
max

(
σ

re f
z

)
×
∫

ρ
re f
end

ρ
re f
start

|dρm|

)−1

(3.3)

where one of the two curves, denoted with superscript re f , is considered to be the reference
curve. The L1 loss function gives the deviation of a compaction curve with respect to a
reference curve as an average per line segment, normalised by the peak compaction pressure.
Eq. 3.3 gives a fraction but the L1 loss function is also frequently reported as a percentage.
Using the L1 loss function, Fig. 3.5 shows that the variability between compaction curves
is about 1 to 2% of the peak compaction pressure. The variability is higher for pure MCC
because the gravity feeder was used instead of the force feeder. The gravity feeder produces
larger deviations in the in-die mass. The L1 loss function is later used to quantify the
deviation of simulations with respect to experiments.
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Fig. 3.5 The variability between experimental compaction curves hovers around 1 to 2% of
the peak compaction pressure. Values are computed as the mean and standard deviation of
all possible pairs of compaction curves with the same powder and target density.

3.6 Die wall friction

The friction between the powder and the die-wall significantly affects the stress distribution
within the powder and has to be accounted for.[17, 19, 22, 23] Because the compaction
experiments in this work use double-ended compaction (DEC) instead of single-ended
compaction (SEC), a new expression for determining the friction coefficient µ is needed.
Typical derivations make use of differential-slice or Janssen-Walker theory and start with the
following force balance [17, 49]

πD2

4
dσz +ρmg

πD2

4
dz = τzπDdz. (3.4)

Material ⟨µ⟩ [−]
MCC 0.1798
MCC-DCPD 50-50 0.1682
MCC-DCPD 20-80 0.1635
MCC-DCPD 10-90 0.1601
DCPD 0.1633

Table 3.1 Mean friction coefficients per material.
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Fig. 3.6 The friction as a function of the radial pressure on the die-wall as given by Eq. 3.11.

The mass is negligible for pharmaceutical tablets and the second term is thus ignored. The
materials is also assumed to be cohesionless. Next, it is assumed that the vertical stresses are
uniformly distributed in a cylindrical cross-section with constant z and that the vertical and
horizontal stresses are principal stresses. This gives

σr = σzK (3.5)

with K being Janssen’s constant. During compression, the failure mode of the powder within
the die is always passive (i.e. inwards collapse). For an ideal Coulomb material this defines
Janssen’s constant as

K =
1+ sin(β )
1− sin(β )

(3.6)

with β the internal angle of friction. The friction coefficient is introduced using Coulomb’s
law of friction

τz = µσr. (3.7)

Combining the above expressions results in

dσz

σz
=

4µK
D

dz. (3.8)
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Eq. 3.8 can be integrated to give the axial stress as function of the top-punch pressure σT and
the distance z with respect to the top punch.

σz(z) = σT exp
(
−4µKz

D

)
(3.9)

Reusing Eq. 3.5 gives
σr(z)

K
= σT exp

(
−4µKz

D

)
. (3.10)

The final expression for the friction coefficient is then

µ =
D

4zK
ln
(

σTK
σr

)
(3.11)

where z is the distance between the upper punch and the radial die-wall sensor. For DEC, the
stress axial stress is symmetrical about the average of the two punch positions, where also
the stress minimum is located. If the sensor is positioned below the average of the two punch
positions then σT and z are substituted by the lower punch stress and distance, respectively.

3.7 True densities

Powders properties are often expressed as a function of the relative density ρ , which is the
density of the powder relative to the same material with a porosity of zero. Therefore, the
density of the non-porous material, called the true density ρt, has to be determined. The
true density is determined using the method described by Sun.[50] A tablet is produced
by compacting a powder up to a given target force. The minimum distance between the
punches and maximum force are then recorded. This procedure is repeated for multiple target
forces, three times per force. The data is collected by a script and the maximum compaction
pressures and densities are calculated. The true density can then be determined using the

Material ρt [g/cm3] R2
adj

MCC 1.6374 0.994
MCC-DCPD 50-50 1.9661 0.995
MCC-DCPD 20-80 2.1882 0.995
MCC-DCPD 10-90 2.2635 0.997
DCPD 2.4380 0.995

Table 3.2 Results of fitting the Kuentz-Leuenberger model. The resulting true density and
goodness of fit, reported as the adjusted R-squared, are given.
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Fig. 3.7 An example of data and the fit used to determine the true density. MCC is shown
here.

Kuentz-Leuenberger model (also known as the modified Heckel model)[51]

σ =
1
C

(
ρc −ρm

ρt
− (1−ρc) ln

(
1− ρm

ρt

1− ρc
ρt

))
(3.12)

where ρm is the compaction density of the material, C a constant indicating the plasticity
of the material, ρc the critical density at which the material starts to gain some strength or
rigidity, and ρt is the true density of the material. The three fitting parameters, including the
true density of the material, result from the fitting of Eq. 3.12 to the data.

3.8 Tensile strengths from crushing experiments

The tensile strengths of the produced tablets are also used to parametrise the model. The
radial (or diametrical) tensile strength is given by

σ
f
r (ρ) =

2Fr,max

πDt
(3.13)
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and the axial tensile strength by

σ
f
z(ρ) =

4Fz,max

πD2 (3.14)

where Fr,max is the maximum radial compression force, Fz,max the maximum axial com-
pression force, D the tablet diameter, and t the tablet thickness. The Texture Analyser
TA.XT.plusC (Stable Micro Systems, Surrey, United Kingdom) equipped with a 50 kg
load cell was used to crush most tablets. However, the strength of some tablets exceeded
the maximum force of the Texture Analyser and the Romaco Kilian STYL’One Evolution
(Medelpharm, Beynost, France) was used instead. The radial and axial tensile where each
determined for three tablets per density per material.

The tensile strength depends strongly on the relative density of the tablet. A common
choice for describing this dependency is the Rhyshkewitch-Duckworth equation[46, 47, 52]

σ
f(ρ) = σ̄ exp(−kb (1−ρ)) (3.15)

where σ̄ is the tensile strength at ρ = 1 and k is a constant representing the bonding capacity.
The relative density ρ follows from the density of the tablet measured just before the tensile
strength experiment. The value of ρ0 is taken to be the lowest value of ρ of all compaction
curves of that mixture. The resulting tensile strengths and fits of Eq. 3.15 can be seen in Fig.
3.8.
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Fig. 3.8 The radial and axial tensile strengths as function of the relative density for each
powder mixture. The curves and constants follow from a fit to Eq. 3.15.



Chapter 4

Defining material properties (direct
parametrisation)

This chapter starts by describing the density-dependent Drucker-Prager Cap (dDPC) model
that is used to define the powder behaviour in FEM simulations. Once the essential ex-
perimental data have been acquired, the next step is to extract the relevant dDPC model
parameters from the data. In the simplest case, the parametrisation is a procedure that
directly defines the dDPC model parameters of a material using the experimental data of
that very same material. This will also be referred to as the direct parametrisation and is
described in the current chapter. Particular care is taken to avoid ad hoc solutions, such that
the described procedure can be automated and is valid for all materials considered. The
proposed procedure is different from those proposed by previous authors but most closely
resembles that of Garner et al.[34]

4.1 Density-dependent Drucker-Prager Cap (dDPC) model

First, the stress state of the material is described by the hydrostatic stress p,

p =
1
3
(σ1 +σ2 +σ3) =

1
3
(σz +2σr) , (4.1)

and the von Mises equivalent stress q,

q =

√
(σ1 −σ2)

2 +(σ2 −σ3)
2 +(σ3 −σ1)

2

2
= |σz −σr| , (4.2)
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Fig. 4.1 A yield surface that is defined as a function of the hydrostatic (p) and Mises (q) stress
as given by the Drucker-Prager Cap (DPC) model. The entire yield surface shifts depending
on the density if the density-dependent DPC model is used. As illustrated, experiments can
be used to obtain specific points on the yield surface. Figure taken from Garner et al.[34]

which have immediately been simplified for the case of axisymmetric and uniaxial com-
paction. The DPC model then defines a yield surface that consists of a shear failure segment
Fs, a cap Fc, and a transition region Ft (Fig. 4.1).

Mohr-Coulomb theory is used to define the shear failure segment. The theory states that
shear flow occurs if

Fs(p,q) = q− p tan(β )−d = 0 (4.3)

where, d is the cohesion, β the internal angle of friction, and compression is considered to
give positive strain.

Aside from the shear failure mode, compressive flow or consolidation can occur. This
happens on the cap of the model, which is given by a curve with constant eccentricity

Fc(p,q) =

√
(p− pa)

2 +

(
Rq

1+α −α/cosβ

)2

−R(d + pa tan β ) = 0 (4.4)
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where
pa =

pb −Rd
1+R tanβ

(4.5)

with pb the hydrostatic yield stress on compression, R the cap eccentricity, and α a smoothing
constant. The function pb is generally considered to depend on the true volumetric plastic
strain ε

pl
v

pb = f (εpl
v ) (4.6)

and also called the cap-hardening curve. To aid numerical implementation, the shear failure
segment and the cap are finally joined together by a smooth transition region

Ft(p,q) =

√
(p− pa)

2 +

[
q−
(

1− α

cosβ

)
(d + pa tanβ ))

]2

−α (d + pa tanβ ) = 0. (4.7)

The material thus undergoes plastic deformation if the stress state of the material is on or
outside this yield surface. Otherwise, the material behaves purely elastically according to its
Young’s modulus E and Poisson’s ratio ν .

The location of the DPC yield surface depends on the relative density ρ of the powder
being compacted when using the dDPC model.[17, 20, 18] The DPC parameters d, β , R, and
pb are therefore made to be functions of the relative density, which is defined as

ρ = ρ0 exp(εpl
v ) (4.8)

with ρ0 the relative density of the uncompacted powder in the die, before compression. The
elastic properties E and ν are also taken to be density-dependent. It should be emphasized
that the relative density is thus only dependent on the plastic deformation and not the elastic
deformation.

The elastic and DPC material parameters for a given material can be obtained using
the above information and the known experimental parameters σ f

r , σ f
r , σz, σr, m, A, and H

that are described in chapter 3. The rest of this chapter describes how to obtain the dDPC
parameters from experiment.

4.2 Cohesion and internal friction angle

The material cohesion d and internal friction angle β can be obtained from tensile strength
experiments.[17] In tensile-strength experiments the tablets undergo shear-failure correspond-
ing to diametrical and axial compression points on the shear line in Fig 4.1. The red lines
through the origin and the diametrical and axial compression points have slopes of 3

√
13/2
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and 3, respectively. This gives p = 2
3σ f

r and q =
√

13σ f
r for the radial strength and p =−1

3σ f
z

and q =−σ f
z for the axial strength. It follows from Eq. 4.3 that

d =
σ f

zσ f
r (
√

13−2)
σ f

z −2σ f
r

(4.9)

and

β = tan−1
(

3(σ f
z +d)
σ f

z

)
. (4.10)

Closed-form expressions for d(ρ) and β (ρ) are then obtained by substituting the tensile
strengths σ f

r and σ f
z that follow from from Eq. 3.15 into Eq. 4.9 and 4.10.
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Fig. 4.2 The cohesion and friction angle as a function of the relative density for each powder
mixture. Curves shown are the result of substituting the tensile strength relations (see Eq.
3.15 and Fig. 3.8) into Eq. 4.9 and 4.10.

4.3 Elastic parameters

The elastic parameters are determined using the segments AB in Fig. 4.3. It widely presumed
that the recovery of the tablet is purely elastic for this part of unloading.[12, 15, 20, 23] In
this part of the curve both the hydrostatic and Mises stress are monotonically decreasing,
making it less likely that internal tablet failure occurs. The slope of the σz-εz curve can then
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be used to get an expression for E. The change in σz can be expressed as

dσz = Mdεz =

(
K +

4
3

G
)

dεz =
E(1−ν)

(1+ν)(1−2ν)
dεz (4.11)

where M is the constrained modulus and the definitions of the bulk modulus

K =
E

3(1−2ν)
(4.12)

and the shear modulus
G =

E
2(1+ν)

(4.13)

have been substituted. Rearranging then gives

E =
(1+ν)(1−2ν)

(1−ν)

(
dσz

dεz

)
. (4.14)

Similarly, the slope of the AB segment of the σz-σr curve can be used to obtain to get an
expression for ν . The change in σz can also be expressed as

dσz =
3K +4G
3K −2G

dσr =
1−ν

ν
dσr (4.15)

which after rearranging gives

ν =

(
dσr

dσz

)
1+
(

dσr

dσz

) . (4.16)

The Poisson’s ratio ν is first obtained using Eq. 4.16 after which Eq. 4.14 is used to get the
Young’s modulus E. The currently available experimental data does not allow for extraction
of reasonable nonlinear elastic parameters (i.e. E and ν as functions of the stress). For future
studies, the procedure described by Mazel et al. is recommended for obtaining nonlinear
elastic parameters.[32] Finally, it is emphasised that the elastic parameters are determined
using true strains, as is conventional for systems experiencing large deformations.
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Fig. 4.3 This figure shows different data resulting form a single compaction experiment.
Upper left: compaction curve used for validation. Upper right: p-q curve used to determine
the DPC parameters R and pb. Lower left: stress-stain curve used to determine the Young’s
modulus and relative density. Lower right: radial to axial stress plot used to determine the
Poisson’s ratio.
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Fig. 4.4 The Young’s modulus and Poisson’s ratio as function of the relative density for each
powder mixture. Symbols with error bars indicate the mean and standard deviation of the
data. The curves are splines and extrapolations as described in section 4.6.

4.4 Relative density

The relative density is the main variable influencing material properties and should be
determined with care. During ejection and the last stages of decompression (segment BC),
the tablet may undergo shear failure.[19] The Mises stress increases along segment BC and
can thus reach the shear failure line in some cases. This can change the relative density of
the tablet or make the measurement thereof infeasible because the tablet fails. Therefore, the
true density is estimated by subtracting the elastic true volumetric strain from the maximum
compression point A. Only the true volumetric plastic strain remains, which is directly
related to the the true density, and will likely not have been affected by tablet failure during
decompression.

Recall that compression is considered to give positive strain and elasticity is assumed to
be linear. Using Eq. 4.11, the elastic strain at point A is given by

ε
el
v = ε

el
z =

∫
σz,A

0

1
M

dσz =
σz,A

M
(4.17)
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and the total strain is given by

ε
tot
v = ε

tot
z = ln

(
H
H0

)
= ln

(
ρm,A

ρ0ρt

)
. (4.18)

Eq. 4.17 and 4.18 can then be combined with Eq. 4.8 to give

ρ = ρ0 exp(εpl
v ) = ρ0 exp(ε tot

v − ε
el
v ) =

ρm,A

ρt
exp
(
−

σz,A

M

)
. (4.19)

The red dashed line in Fig. 4.3 illustrates how the relative density ρ is determined starting
from point A.

4.5 Plastic parameters

The plastic parameters R, pa, and pb are considered next. Point A in Fig. 4.3, the stress peak,
is generally considered to be located on the yield surface. Eq. 4.4 therefore applies at point
A, which means that Fc(pA,qA) = 0. Associated with Eq. 4.4 is also a plastic flow potential
component:

Gc =

√
(p− pa)

2 +

(
Rq

1+α −α/cosβ

)2

(4.20)

The associative flow rule in the radial direction is

dε
pl
r = dλ

∂Gc

∂σr

∣∣∣∣∣
pA,qA

(4.21)

with dε
pl
r the change in radial plastic strain, dλ > 0 the magnitude of the plastic deformation,

and the derivative of Gc indicating the direction. Furthermore, the die wall is assumed to be
a non-deformable rigid body giving dε

pl
r = 0. It follows that the change in Gc at this point is

also zero:
∂Gc

∂σr

∣∣∣∣∣
pA,qA

= 0. (4.22)

Eq. 4.22 can then be combined with Eqs. 4.1, 4.2, and 4.20 to give

R =

√
2(1+α −α/cosβ )2

3qA
(pA − pa). (4.23)
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Hereafter, Eq. 4.23 is substituted back into Eq. 4.4 to also obtain

pa =−3qA +4d (1+α −α/cosβ )2 tanβ

4 [(1+α −α/cosβ ) tanβ ]2
+√

9q2
A +24qAd (1+α −α/cosβ )2 tanβ +8

(
3pAqA +2q2

A
)
[(1+α −α/cosβ ) tanβ ]2

4 [(1+α −α/cosβ ) tanβ ]2
.

Rearranging Eq. 4.5 finally gives an expression for the hydrostatic yield stress

pb = pa (1+R tanβ )+Rd, (4.24)

where the value of α is relatively unimportant and set to a constant 0.03 in accordance with
previous authors.[15]
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Fig. 4.5 The cap-shape parameter R as function of the relative density for each powder
mixture. Symbols with error bars indicate the mean and standard deviation of the data. The
curves are splines and extrapolations as described in section 4.6.
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Fig. 4.6 The hydrostatic yield stress pb as function of the relative density for each powder
mixture. This function is also called the cap hardening curve. Symbols with error bars indicate
the mean and standard deviation of the data. The curves are splines and extrapolations as
described in section 4.6.

4.6 Fitting and extrapolating the DPC parameters

Because the FEM simulations should follow the experimental compaction curves as closely
as possible, the parametrisation should follow the trend in experimental material parameters
as closely as possible. This necessitates an appropriate fitting and interpolation method. It
was found that analytical models were incapable of sufficiently describing the data for all
materials. Therefore, to retain generality, all parameters were fit using quadratic B-splines
with a number of breaks equal to half the number of target densities, rounded to the nearest
integer.[53] There are two exceptions, linear splines were used for ν and cubic splines for pb.
Splines were also forced to go through the mean values of the parameters at the minimum
and maximum target density to enforce continuity with the extrapolations.

Physical extrapolations are also needed. First, because the simulations start at a density
lower than the minimum observed tablet density. And second, because some areas of the
tablet will reach densities higher than the mean density at maximum compaction. The
extrapolation methods proposed by Garner et al. were used for the dDPC parameters.[34] In
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short, low-density extrapolations are done by fitting the function

ρ(ρm,ρt,ρ0) = a
(

ρm

ρt
−ρ0

)
+b
(

ρm

ρt
−ρ0

)2

(4.25)

using the known relative densities at maximum compaction, where a and b are constants.
This function is then used to compute estimations of the DPC parameters along the low-
density end of the compaction curves. The estimated dDPC parameters are then fit using the
same B-splines as previously mentioned. The high-density extrapolations are based on the
modified Gurson model and the physical requirement that pb and R should tend to infinity for
a relative density of one. The low- and high-density extrapolations are forced to go through
the lowest and highest target density, respectively, to enforce continuity.

The elastic parameters were extrapolated as follows. For the Young’s modulus, the
low-density extrapolation is given by a straight line through E = 0.1 GPa at ρ0 and the
mean Young’s modulus at the lowest target density. Using a minimum value for E that is
much lower than 0.1 GPa causes the powder not to compact during the FEM simulations.
For the high-density extrapolations, a limiting value E(ρ = 1) is determined. The data
is fit to two models for porous materials, the Hashin-Hasselman model and the model by
Nachtrab.[54, 55] The value of E(ρ = 1) is then given by the model with the best fit. The
high-density extrapolation is then given by a straight line from the mean Young’s modulus at
the highest target density to E(ρ = 1). The extrapolations for the Poisson’s ratio followed
directly from the linear spline used to fit the data.

Aside from sufficiently physical extrapolations, a number of additional requirements were
found to be essential to assure physical and numerically stable results at the same time. First,
pb needs a minimum value and a significant slope. This was done by setting pb(ρ0) = 1.0
MPa and then drawing a straight line to the first point for which pb > 5.0 MPa. Second, pb

and R need to be monotonically increasing. Any decreasing values in pb or R were therefore
replaced by linear interpolations to the next larger value.

The parameter inter- and extrapolations can be seen alongside the data in Fig. 4.2, 4.4,
4.5, and 4.6. Parameters d and β were excluded from the aforementioned procedures because
their functions had already been set through Eq. 3.15, 4.9, and 4.10.

Finally, although pb has been defined as a function of ρ , the Abaqus software requires
pb(ε

pl
v ) as cap-hardening curve. This can be solved by a transformation. The volumetric

plastic strain is directly related to the relative density, as follows from Eq. 4.8:

ε
pl
v (ρ) = ln

(
ρ

ρ0

)
, (4.26)
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where ρ0 is the relative density of the uncompacted powder in the die, before compression.
The function pb(ρ) is thus converted using Eq. 4.26, giving

pb = f (εpl
v ) = f

(
ln
(

ρ

ρ0

))
. (4.27)



Chapter 5

Estimation of mixture properties (indirect
parametrisation)

Having described a generalised procedure to obtain dDPC model parameters from experiment,
the next improvement is the definition of a method that successfully predicts the dDPC
parameters of a binary mixture. In particular, the method should only use experimental data
of the single-component powders. This chapter will propose two such methods. The first
is to create a (microscopically-)segregated composite that is sufficiently descriptive of the
mixture. The second is to define a set of rules that mixes the dDPC model parameters of
two single-components powders to get the parameters of a binary powder mixture. Both
approaches are referred to as indirect parametrisation methods because the methods do not
use any experimental data of the mixtures to predict their properties.

5.1 True density and volume fraction

Regardless of the chosen method, the volume fraction per component and the true density of
the mixture are needed.

The true density of a mixture can be estimated using the volumetric mixing rule

ρt,mix =

(
∑

i

wi

ρt,i

)−1

(5.1)

where ρt,i and wi are the true density and weight fraction of the respective constituent
material.[50] The deviations of Eq. 5.1 with respect to the experimental true densities are
+0.4, −1.5, and −2.7 % for the 50-50, 20-80, and 10-90 mixtures, respectively. Eq. 5.1 is
therefore considered to be accurate, as was also demonstrated by Wu et al.[46]



36 Estimation of mixture properties (indirect parametrisation)

The volume faction of component i within the mixture can be estimated using[47]

yi =

(
wi

ρiρt,i

)(
∑

j

(
w j

ρ jρt, j

))−1

. (5.2)

5.2 Reynolds et al. model

Before introducing the new methods, the Reynolds et al. model is briefly described.[47] This
is the simplest of the models that gives a prediction of the density of a mixtures as function of
the compaction pressure. The model cannot predict decompression behaviour or give more
detailed information such as the stress and density profiles within the tablet. This limits the
ability of the model to help identify and prevent tablet defects in production, especially when
there are strong restrictions on the composition of the powder. However, this model provides
a good reference points for comparison with the new methods.

In short, the Reynolds model assumes the individual materials within the composite
are ordered like a checker board. This results in isostress conditions. The densities of the
individual components are then expressed as a function of the stress. The mixture density is
then given as a volumetric average of the individual component densities. The Reynolds et al.
prediction of the compaction curve of a mixture is thus given by

ρm(σ)

ρt
= ∑

i

yiρm,i(σ)

ρt,i
, (5.3)

which for a binary mixture becomes

ρm(σ)

ρt
=

y1ρm,1(σ)

ρt,1
+

y2ρm,2(σ)

ρt,2
=

y1ρm,1(σ)

ρt,1
+

(1− y1)ρm,2(σ)

ρt,2
(5.4)

where the identity y2 = 1− y1 has been used. The full details can be found in the original
paper.[47]

5.3 Layered or (microscopically-)segregated tablets

The first method proposed is to simulate a tablet with distinct regions of pure MCC and
DCPD. However, the way that the stress distributes itself will strongly depend on the
spatial arrangement of the regions of MCC and DCPD within the tablet. For example, fully
horizontal or vertical layers will approximately correspond to a composite under isostress
or isostrain conditions, respectively. Simulating a number of layered tablets with different
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Fig. 5.1 Initial spatial arrangements for the layered tablets that have been considered in
this study. All tablets are 50-50 MCC-DCPD. Blue indicates the MCC powder whereas
red indicates the DCPD powder. Note that the volume of the layers differs because of the
difference in density.

spatial arrangements is therefore necessary and will provide information about the mechanical
interaction between the two materials. Fig. 5.1 shows the spatial arrangements considered,
which are all bilayers. The simulation of layered tablets also requires a number of adjustments
to the model that are discussed in the rest of this section.

For all mixtures it was observed that

ρm,0,tot ̸= y1ρm,0,1 + y2ρm,0,2, (5.5)

which means that the starting density of the individual layers has to be adjusted to ensure
mass conservation. To enforce conservation, the relative density of all components is changed
by an equal amount,

ρi = ρ0,i +δ , (5.6)

under the mass-conservation constraint

ρm,0,tot = y0,1ρm,0,1 + y0,2ρm,0,2 (5.7)

where ρm,0,i is the minimum density of the powders in g/cm3 and y0,i is the estimated initial
volume fraction. The value of y0,i follows from Eq. 5.2 with ρi = ρ0,i for all i. Substitution
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of Eq. 5.6 into Eq. 5.7 and using ρm,0,i = ρ0,iρt,i gives

δ =

(
ρm,0,tot −∑

i
y0,iρ0,iρt,i

)(
∑

i
y0,iρt,i

)−1

. (5.8)

Eq. 5.6 and Eq. 5.8 now define the initial relative density of a layer. Furthermore, because
the starting density of the individual materials is no longer ρ0,i this also means that the initial
plastic strain ε

pl
v,0,i has to be adjusted (since it is no longer zero). This property is called the

initial yield surface position within Abaqus and can be computed using Eq. 4.8. Interaction
between the layers is automatically defined as the layers are not allowed to overlap. The only
exceptions are the friction and cohesion between the layers. Hancock et al. found that the
friction coefficient µ between two tablets is typically of the order of 0.01.[56] The friction
coefficient between the layers is therefore set to µ = 0.01. Even for such low values of µ ,
the layers show minimal slippage before the end of the decompression stage. The cohesion
between the different materials is less straightforward to determine and is neglected in the
present study.

5.4 Mixing rules

The second method proposed makes use of mixing rules. Under the assumption that isostress
conditions are most suitable, a set of mixing rules was developed to predict the elastic and
dDPC parameters for an arbitrary mixture.

All model parameters depend on the relative density but now have do be expressed as a
function of the stress to adhere to the isostress condition. Therefore, the compaction density
of each single-component powder i is expressed as a function of stress by fitting a spline,
ρm,i(σ). The spline ρm,i(σ) is then substituted into Eq. 4.25 to get ρi(σ). The function
ρi(σ) is then substituted into the previously-determined parameter functions to defines all
material parameters of a component i as a function of the stress.

Since the volume fractions of each component are not constant during compression, these
also have to be determined. The total stain per component is

εv,i(σ) = ε
el
v + ε

pl
v =

∫
σ

0

1
Mi(ρi(σ))

dσ + ln
(

ρi(σ)

ρ0,i

)
(5.9)

where Eq. 4.17 and 4.26 have been substituted. The constrained modulus Mi follows from
the known functions for the elastic parameters and Eq. 4.11. These strains define the change
in volume for each component and can thus be used to determine the volume fraction as a
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function of stress as well.

yi(σ) = y0,i exp(−εv,i(σ))

(
∑

j
y0, j exp

(
−εv, j(σ)

))−1

(5.10)

Finally, the density of the mixture follows as

ρ(σ) =
1
ρt

∑
i

yi(σ)ρi(σ) (5.11)

and the value of any property θ for the mixture is given by

θ(ρ) = f (θ1(ρ1), . . . ,θn(ρn),y1(ρ1), . . . ,yn(ρn)) (5.12)

with f (. . .) being the appropriate mixing rule.
In accordance with the isostress model, the mixing rules for the Young’s modulus and

the Poisson’s ration are as a harmonic and an arithmetic mean, respectively. For all other
parameters the arithmetic mean is used. The arithmetic mean is f (θ1(ρ1), . . . ,θn(ρn)) =

∑i yi(ρi)θi(ρi). And the harmonic mean is f (θ1(ρ1), . . . ,θn(ρn)) =
(

∑i
yi(ρi)
θi(ρi)

)−1
. The exact

mixing rule applied on the plastic parameters appears to make little difference to the eventual
results because, at the same stress, the yield loci for the different materials are already very
close to each other.





Chapter 6

FEM and numerical modelling details

This chapter describes the FEM simulation set-up and numerical implementation of the
dDPC model. The commercial software Abaqus 2019 by Simulia was used for all FEM
simulations and subroutines were used to implement the dDPC model. Note that units within
Abaqus are arbitrary but need to be consistent. The units used here are N, mm, MPa, degrees,
and for the density kg/mm3.

6.1 Geometry and meshing

The FEM model was made to mimic the experimental compaction process as much as
possible. The in-die and punch diameters were thus 11.28 mm. The crushing plates were
12.28 mm to avoid overhang of the tablet. The compaction profile was a V-shaped DEC
profile. The initial height of the powder and the final compaction height were set to the
averages of all compaction experiments with the same target density. Note that the final
density of a tablet is mainly determined by the initial height of the powder, as the final
compaction heights are approximately equal.

All parts of the model were represented as axisymmetric deformable bodies. Also making
the tooling deformable bodies has two advantages; it improves the numerical stability and
facilitates future extensions that aim to include heat transfer. A uniform, regular mesh
with square elements was used for the powder, the punches, and the crushing plates. The
mesh for the powder consisted of 4312 to 7840 elements, depending on the initial height of
the powder. The punch meshes had 376 elements and the crushing plate meshes had 432
elements. The die was given an irregular mesh made out of rectangular as well as triangular
elements (because of the curved edges) with a total of 1294 elements. The punches, die wall,
and crushing plates were made to be 1 mm thick and given the properties of tooling steel
("Elastic": E = 210 GPa, ν = 0.3, "Plastic": yield stress going from 1400 to 1800 MPa for
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Fig. 6.1 Schematic drawing of the tooling geometry at the beginning of the simulation. The
crushing plates do not interact with the powder until after ejection, when the tablet has been
moved to a position in between the crushing plates. The gradient of the die wall is continuous
at the point where the tapering starts to curve outwards. Dimensions are not to scale.

a plastic strain going from 0 to 0.4, and "Density": 7900 kg/m3).[57] Boundary conditions
were applied to the outer surfaces of the punches and die. This means that the outer surface
of the die was fixed and displacements were applied on the top of the top punch and bottom
of the bottom punch.

In the case of materials with a very low cohesions and friction angles, the tablet can
strongly bend upon ejection due to the sudden release of residual radial pressure. Such tablet
bending does not allow for proper numerical crushing experiments. Tapering was therefore
added to give a smoother release of the residual radial pressure and avoid excessive bending
of the tablet. For some high-density tablets, the initial height of the powder can cause the
powder to rise above the starting point of the tapering. However, compaction simulation
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with and without tapering show that this has no visible effect on the resulting compaction
pressures and density profiles.

Fig. 6.2 shows that the used combination of the parametrisation and model geometries
gives excellent convergence.
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Fig. 6.2 Convergence of the resulting compaction curves with respect to the number of mesh
elements. The simulation with the highest number of elements is used as the reference for
computing the L1 loss function. All simulations featured compaction of MCC to the highest
target density. The error in the compaction curves due to mesh resolution is negligible.

6.2 Numerical integration

Time step integration was performed using the dynamic implicit scheme with the quasi-static
option. The amplitude of the boundary conditions was given as a smooth ramp over time
per step (loading, unloading, ejection, crushing). Reduced element integration was disabled,
giving the CAX3 or CAX4 element type for the chosen axisymmetric representation. The
option Nlgeom was on, making all strain definitions be true strains (and not engineering
strains).
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6.3 Powder properties and subroutine

Mechanical properties of the powder bed were set according to the parametrisation described
in chapters 4 and 5. The required keywords are "Cap Plasticity", "Cap Hardening", "Density",
"Depvar", "Elastic", and "User Defined Field". The MATLAB parametrisation script gives
the tabulated material properties that can then be directly copy-pasted into Abaqus. The
flow-stress ratio was set to 1 in correspondence with the dDPC model.

The keywords "Depvar" and "User Defined Field" enable the FORTAN subroutine
USDFIELD that allows the definition of the relative density as a new field variable. This is
necessary to make the DPC model parameters dependent on the relative density. For each
individual node, the relative density is given by

ρ(t) = ρ0 exp
(
−min

(
ε

pl
v (0), . . . ,εpl

v (t)
))

(6.1)

where ε
pl
v is given by variable PEQC(4). Eq. 6.1 follows from Eq. 4.8 except that the sign

of the plastic strain changes because Abaqus internally defines strain to be negative for
compression. Furthermore, the constraint that ρ is only allowed to increase was added to
assure stability of the simulation. Without this constraint, the relative density is monotonically
increasing during compression and decreases negligible amounts during decompression.
However, in the case of low-cohesion materials, the tablet can strongly shear upon ejection.
This causes the relative density to decrease, which in turn lowers the cohesion, causing
a positive feedback loop that leads to numerical instability and excessive dilation of the
tablet. The aforementioned constraint was therefore added. The effect of shear yielding upon
ejection can still be observed through the plastic deformation.

Friction and normal interactions are added between the surfaces of the powder and tooling
that come into contact with each other. A penalty friction type is used with a constant friction
coefficient. Normal behaviour is given as an exponential pressure-overclosure with pressure
10 and clearance 0.002. In the case of a layered tablet, the interaction between the two
powder meshes is defined in the same way.

6.4 Output

The compaction pressure is given by the mean force on the punches divided by the punch
area (see section 3.2). Similarly, the compaction density is given by

ρm =
m
V

=
m

HA
(6.2)
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where V is the in-die volume and A is the face area of the tablet.
During the crushing of the tablet, the stress on each plate is computed by dividing the

force on the plate by the contact area between the plate and the tablet. The yield stress is then
compute from the average stress on the top and bottom plate at yield. The tablet is considered
to yield when there is a path of fully-yielding elements (as indicated by the variable AC
YIELD) either vertically or horizontally across the tablet.[28] In some cases this may occur at
very low stresses, because the tablet has slightly bent during ejection. This can be recognised
by pure shear yield (AC YIELD 1) with an irregular yielding pattern and is ignored when
determining the yield stress.

Element averaging of the output was disabled when visualising field variables (e.g. the
stress profile of the tablet).





Chapter 7

Results and discussion

7.1 Direct parametrisation

7.1.1 Validation of the direct method

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

100

200

300

400

500

600

MCC simulation
MCC experiment
MCC-DCPD 50-50 simulation
MCC-DCPD 50-50 experiment
MCC-DCPD 20-80 simulation
MCC-DCPD 20-80 experiment
MCC-DCPD 10-90 simulation
MCC-DCPD 10-90 experiment
DCPD simulation
DCPD experiment

Fig. 7.1 FEM simulations using direct parametrisation follow the experimental data closely for
all materials and target densities. One experimental curve is shown per unique combination
of material and target density. Symbols indicate the compaction curve as predicted by FEM
simulations.

To validate the automated parametrisation method proposed in chapter 4, FEM simula-
tions of the compaction process of each material were done using the set-up as described
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Fig. 7.2 The normalised L1 loss function underlines that FEM simulations accurately de-
scribe the experimental data with an average error between 0.5 and 5.7% when the direct
parametrisation method of chapter 4 is used. For a given line segment, the L1 loss function
gives the expected error of the simulated curve with respect to the experimental compaction
curve. The L1 loss function of the simulated curves was computed in comparison with each
experimental curve as a percentage of the peak compaction pressure. The resulting mean and
standard deviation of the L1 loss function are shown here.

in chapter 6. The resulting compaction curves are shown in Fig. 7.1. Qualitatively, it can
already be seen that the simulations closely follow the experimental data. The most notable
deviations occur in the final stages of decompression, located at the end of the compaction
curve. The decompression part of the curve start to curve backwards for the experiments
whereas for the simulations the decompression remains linear. This indicates that either the
mechanical properties are changing during decompression, possibly due to internal tablet
failure, or that the elastic behaviour is actually nonlinear or visco-elastic. The only visible
tablet failure, chipping, occurred for the 90% and 100% DCPD tablets produced with the
highest compaction pressures (see section 7.1.2). External failure is therefore only present
in some cases. Internal failure, such as micro-cracks, is presumed not to cause of such a
significant change in the elastic modulus. Furthermore, the decompressions speed was only
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Fig. 7.3 The residual radial stress on the die wall after decompression as function of the
relative density for each powder mixture. Symbols indicate predictions by the FEM simula-
tions whereas curves indicate the experimental values. The curves are splines bound by the
experimental data.

0.2 mm/s, giving quasi-static conditions. Visco-elastic is therefore also considered to be
unlikely. This leaves nonlinear elastic behaviour as the most likely cause of the nonlinear
decompression of the powders, as multiple authors have already suggested.[20, 21, 31, 35, 9]
An inspection of the residual radial stresses after decompression further supports this. Fig.
7.3 shows that the FEM simulations have a tendency to overestimate the experimental values
at high densities but are in good agreement at low densities. A nonlinear elasticity law, i.e.
strain hardening, could reduce the residual radial stresses for high-density tablets and thus
improve agreement with experiment.

Although the qualitative assessment shows great promise, a more quantitative assessment
of the parametrisation accuracy is desirable. Therefore, the error was quantified by computing
the L1 loss function (Eq. 3.3) of the simulated compaction curves with respect to the
experimental curves. Fig. 7.2 shows the mean and standard deviation of the computed L1
loss functions. The inability of the simulations to describe the nonlinear unloading behaviour
contributes strongly to the error. This also explains the higher errors at lower compaction
densities because shorter loading paths lead to a stronger contribution of the unloading path.



50 Results and discussion

The mean L1 loss function can decrease by as much as 74% if only the loading path of
the curves is considered. All in all, the simulations show excellent correspondence with
experiment, giving a mean error between 0.8 and 5.7% with an average of 2.5%. This
validates the direct parametrisation described in chapter 4, giving an accurate representation
of all materials considered without the need for user input or other ad hoc solutions.

Although accuracy is a basic requirement for a successful parametrisation method, a
certain degree of robustness is also needed for the method to be of practical use. Therefore, the
parametrisation was stress-tested by repeating the simulations with a set of parametrisations
using minimal input data. Two parametrisations for DCPD were produced using, per target
density, only 1 out of 10 compaction curves and 1 out of 3 radial and axial tensile strengths.
One parametrisation used the samples giving the lowest maximum stresses of all, whereas
the other parametrisation used the samples with the highest maximum stresses. These
parametrisations, aside from using minimal data, thus also represent the extremes of the
experimental data. Fig. 7.4 and 7.5 show that such parametrisations continue to closely
follow the experimental data. All experimental compaction curves as well as the original
parametrisation, which uses all samples, have been added to the figure for comparison. The
error quantification in Fig. 7.6 further shows that the variation in the error is about equal
to the experimental variability of 1 to 2%. This implies that the parametrisation is robust
and that only a single observation per target density is sufficient to derive valid material
properties for the FEM model.



7.1 Direct parametrisation 51

1 1.2 1.4 1.6 1.8 2 2.2
0

100

200

300

400

500

600

Experimental data
FEM, full parametsiation
FEM, higher extreme of parametrisation
FEM, lower extreme of parametrisation

Fig. 7.4 Compaction curves are shown for the experimental data as well as various parametri-
sations of the FEM simulations, demonstrating that the parametrisation is stable. All com-
paction curves of DCPD is shown. The full parametrisation refers to a direct parametrisation
in which all the data (10 curves and 3 tensile strengths per density) were used. The high-
est and lowest extremes of the parametrisations indicate simulations for which the direct
parametrisation was done using only the data with the highest or lowest peak stress (1 curve
and 1 tensile strength), respectively.
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Fig. 7.5 The simulated compaction curves can be seen to stay close to the experimental
compaction curves, even when the parametrisation only makes use of the 10% of data at
either extreme. The data displayed is the same as in Fig. 7.4 but on a different scale.
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Fig. 7.6 The L1 loss function for the extremes of the parametrisation show that the variability
in the parametrisation is about equal to the variability in the experimental data (1 to 2 %).
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7.1.2 Qualitative identification of tablet defects

Fig. 7.7 Chipping that occurred at the lower end of the tablet upon ejection. This defect is
present in the two most dense DCPD tablets and the most dense tablet with 10% MCC and
90% DCPD. The left image shows the damage on the tablet and the right image shows the
trail of powder that the chipped tablet left behind. Pictures were taken with the tablets out of
the die, on the lab bench.

Out of all tablet, three types of tablets showed defects. Defects were classified as chipping
and could be seen at the bottom of the tablet (see Fig. 7.7). The tablets were those with
10% MCC and 90% DCPD at the highest density and the 100% DCPD at the highest two
densities. Failure was expected to be most likely for these tablets because of their lower
cohesions and very high compaction pressures. Inspection of the simulated shear stress
profiles showed that the highest stress concentrations occur at the lower edge of the tablet.
The stress concentration builds up during decompression, lowers during the start of ejection,
and builds up again as the tablet approaches the die exit (see Fig. 7.8). Chipping would
therefore also be expected based on the simulations. The stress patterns differ from those
previously reported, possibly because the material (grade) is different and the compaction
profile is double-ended instead of single-ended compaction.[15, 20, 19, 22, 23] Nonetheless,
the presented model properly indicates the most likely type and location of tablet failure.
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Fig. 7.8 Shear stress profiles for the most dense DCPD tablet at the end of decompression
and during ejection, just before the tablet loses contact with the die wall. The high-stress
regions correspond to the location where the tablet in Fig. 7.7 has chipped.

7.1.3 Evaluation of crushing simulations

Fig. 7.9 Failure patterns of the tablet upon crushing using the AC YIELD flag in Abaqus.
Red means the materials is actively yielding or undergoing plastic deformation, blue means
no yield is happening. The example shown is an MCC tablet with a final relative density of
0.85.

Aside from tablet failure upon ejection, tablet failure may also occur in any of the
processing steps after ejection. Tablet failure patterns resulting from external forces are
therefore also of interest. Numerical crushing experiments were therefore performed in
hope of being able to predict the correct failure mechanism. Furthermore, consistency can
be tested by seeing if the same crushing strengths can be obtained as had been used in the
parametrisation. Tablets were considered to fail if yield occurred vertically or horizontally
across the entire tablet.[28] Yielding always seems to start at the tips and middle of the tablet
and then arcs inwards before moving horizontally across the tablet (Fig. 7.9). In the case of
denser tablets, yielding is also initiated at the centre of the tablet and propagates outwards
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Fig. 7.10 The axial tensile strength as function of the relative density for each powder
mixture. Symbols indicate predictions by the FEM simulations whereas curves indicate the
experimental values. Curves are given by the fits to Eq. 3.15 and identical to those shown in
Fig. 3.8.

until it connects with the yielding that initiates from the perimeter of the tablet. A more
detailed look at the yield flags reveals that almost all failure happens on the cap of the DPC
model. This means that the magnitude of the predicted tensile strengths depends strongly on
the cap hardening curve. In fact, the tensile strengths in Fig. 7.10 seem to follow the same
trend as the cap hardening curves in Fig. 4.6. Fig. 7.10 also shows that the FEM simulations
have a tendency to overestimate the tensile strength of the tablet. The tensile strengths are in
good agreement with experiment for low- and intermediate-density MCC tablets but strongly
overestimate the tensile strengths of high-density MCC and DCPD tablets at all densities.
The trends of mixture tablets are in between those observed for MCC and DCPD.

The discrepancy between the experimental and predicted tensile strengths for DCPD
may result from the absence of explicit fragmentation and fracture within the model. DCPD
is known to be a brittle material that fragments upon failure whereas MCC behaves more
plastically.[48, 58] The dDPC parametrisation nonetheless describes the collective of all
types of compressive failure within a single history-independent yield surface, i.e. the cap.
However, the yield surface may be history-dependent depending on the type of compressive



56 Results and discussion

failure. A second compression cycle of a frangible material would start with a fraction of
the particles already being fragmented. This can reduce the internal stress dissipation within
the tablet as fragmentation is a dissipation mechanism. Alternatively, it can be said that the
compaction curve contains both reversible and irreversible work. Both types of work will
indiscriminately contribute to the parametrised yield stress. If DCPD undergoes irreversible
work due to fragmentation on the first compaction, it can thus mean that materials with
more DCPD are able to absorb less irreversible work during a second compaction. This
would explain why the tensile strength is more strongly overestimated for DPCD than MCC,
the latter being much less frangible.[59] Moreover, irreversible work is strongly related
to the amount of heat generated during compaction.[25, 36, 37] If DCPD indeed absorbs
more irreversible work, this also suggests that DCPD tablets generate more heat during
compression. Because the specific heat of MCC and DCPD upon heating is similar, DCPD
tablets should reach higher temperatures.[60] Picker-Freyer and Schmidt showed that the
surface temperature after ejection is actually lower for DCPD than MCC.[61] However,
DCPD also has a higher thermal conductivity and the compression speed in the study was
rather low (10 tablets per minute). It can therefore not be concluded if DCPD indeed absorbs
more irreversible work and future studies on high-speed compression of DCDP and MCC are
needed. Such studies can be used to tests the hypothesis that irreversible work (fragmentation)
is responsible for the overestimation of the yield stress in tablets. Moreover, if the hypothesis
is true, such studies would also show that the yield stress (i.e. cap hardening curve) increases
with compression speed because the amount of irreversible work increases due to increased
friction.

7.2 Indirect parametrisation (layered)

7.2.1 Validation of the indirect layered method

Having validated the direct parametrisation method, the indirect parametrisation methods are
to be validated next.

As mentioned in chapter 5, the first method was to simulate a number of tablets with
different layer arrangements. This also gives and idea of the mechanical interaction between
the components. The compaction curves in Fig. 7.11 show that a composite made out of two
horizontally- or staircase-oriented layers mimic the behaviour of the real mixture the best.
Any other spatial arrangement of the layers leads to an overestimation of the compaction
pressure. The horizontal underestimates the compaction pressure near the middle of the
curve. All arrangements overestimate the compaction pressure near the end. The staircase
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Fig. 7.11 Compaction curves resulting from the various spatial arrangements of segregated
MCC and DCPD layers shown in Fig. 5.1. This was 50%-50% MCC-DCPD to the highest
target density. The mean L1 loss function is a also given for each arrangement. The horizontal
and staircase bilayers are closest to that of the experimental homogeneous powder mixture.

arrangement seems to outperform the horizontal arrangement based on the L1 loss function.
This is probably due to the staircase orientation showing a slightly nonlinear decompression
path. However, the staircase orientation is more complex and the difference in performance
with respect to horizontal orientation is about 2%. For simplicity, it was thus decided to
continue with horizontally-oriented layers.

Simulations with horizontal layers were done for all mixtures considered. The results can
be seen in Fig. 7.12 and 7.13. The L1 loss function varied from 1.4 to 14.0% with a mean of
4.5%. Given that only the data of the pure components was used for these simulations, this
gives a good prediction of the compaction behaviour of the mixtures. The Reynolds et al.
model can also be used, the results of which are shown in Fig. 7.14 and 7.15. The L1 loss
function varied from 0.8 to 10.0% with a mean of 3.1%. This appear to be better than the
FEM bilayer simulations. However, the Reynolds et al. model makes no prediction for the
decompression part of the curve, which typically increases the L1 loss function.
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Fig. 7.12 The simulated compaction curves
of tablets with horizontal bilayers.
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Fig. 7.13 The L1 loss function for the simula-
tions with tablets with horizontal bilayers.

7.2.2 Implications for the mixing model

Nonetheless, the bilayer method does not give meaningful predictions of the stress distri-
butions within a tablet because of the layer structure. It is also not possible to simulate the
ejection, where failure most typically occurs, or crushing of the tablet because the layers
would separate due to the absence of cohesion between the layers. The layer method can
thus be used to predict the compaction behaviour of mixtures but a method that truly mixes
the material properties is still preferred.

The agreement between the behaviour of the horizontally oriented composite and the
homogeneous mixture implies that isostress conditions may be applicable. This would mean
that the stress within each of the two materials within the powder mixture is identical, as
opposed to iso-strain conditions, where the deformation is constrained to be equal. It is
also noted that the DEC profile is symmetric about the middle of the powder. If both of
these conditions apply, it would also mean that increasing the number of horizontal layers
should not change the compaction behaviour. Note that this only holds for an even number
of layers, because an odd number of layers would mean that the mass distribution of one
of the two material components would shift towards the perimeter of the tablet, breaking
the symmetry that also holds for a true mixture. Furthermore, flipping the tablet vertically
should not change the compaction behaviour. A non-exhaustive set of simulations was
done featuring multi-layered tablets. A single mesh was used but nodes were given different
material properties based on the assigned layers. These simulations seem to suggest that these
assertions are indeed correct, as variation in the compaction behaviour were minimal. This
further implies that isostress conditions can be used to describe the compaction behaviour of
multi-component mixtures.
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Fig. 7.14 The loading part of the compaction
curves predicted by the model of Reynolds et
al.[47]
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Fig. 7.15 The L1 loss function for the model
of Reynolds et al.[47]

Layer arrangement: Horizontal Vertical Staircase

Material at die-wall: MCC DCPD MCC DCPD MCC DCPD

σmax
z , maximum axial stress 532 532 509 496 521 519

σmax
r , maximum radial stress 359 359 334 292 346 347

σ res
r , residual radial stress 71 71 64 82 55 67

σmax
r /σmax

z 0.67 0.67 0.64 0.59 0.66 0.67
σ res

r /σmax
z 0.13 0.13 0.13 0.17 0.11 0.13

Table 7.1 The maximum and residual stresses for the tablets with segregated layers of
MCC and DCPD with spatial arrangements as shown in Fig. 5.1. All values are in MPa.
Various stress ratios can also be seen. Arrangements with the softer material (MCC) near the
perimeter of the tablet show lower ratios of residual radial to axial stress.

7.2.3 The effect of layer arrangement on the radial stress

Aside from the compaction behaviour, another noteworthy trend was observed within the
various composite tablets. Changing the spatial distributions of the component materials
within the composite was found to have a pronounced affect on the ratio of the residual radial
stress to maximum axial stress. It appears that placing the softer material at the perimeter of
the tablet lowers this ratio (Table 7.1). For example, if a tablet with two vertical (concentric)
layers is considered, the ratio of the residual radial stress to maximum axial stress is lower
when MCC is near the perimeter than vice-versa. The softer material can be said to cushion
the pressure from the harder material on the die wall. This trend is consistent within different
types of spatial arrangement (i.e. vertical layers or a staircase pattern) but not across different
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spatial arrangements. The variation across different types of arrangement probably results
from the large change in how the stress is distributed for different spatial arrangements.
Nonetheless, these observations may be useful to reduce incidence of tablet failure in layered
or multi-powder tablets as the residual radial stress has shown to be one of the strongest
predictors of tabletting defects.[43] Creating tablets with precise layers may be difficult in
practice, but the layers do not have to be perfectly arranged as long as the softer material is
placed more at the perimeter of the tablet.

The assertions mentioned in section 7.2.2 with respect to horizontal layers hold only for
an even number of layers. Ideally, these assertions are also confirmed for an odd number
of layers. In the case of an odd number of horizontal layers, for example in a three-layered
tablet with one material in the middle and the other at the punches, the symmetry between
the different layer arrangements is broken. The materials can experience different average
stresses depending on which material is in the middle layer. Tablets with three horizontal
layers were simulated to get an impression of how strongly this matters. Placing the softer
material in the middle gives a slightly lower ratios of the maximum radial to compaction
pressure (0.69 versus 0.68) and residual radial to maximum compaction pressure (0.14 versus
0.15) and a maximum compaction pressure that is 1.5% higher. This suggests that the
aforementioned assertions with respect to horizontal bilayers may also hold reasonably well
for an odd number of layers. However, using non-flat punches likely results in much larger
differences, as the material near the punches will typically undergo much more deformation.

7.3 Indirect parametrisation (mixed)
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Fig. 7.16 The simulated compaction curves
when using mixing rules.
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Fig. 7.17 The L1 loss function for the FEM
simulations using mixing rules.
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Fig. 7.18 Stress profiles at maximum compression for the direct parametrisation (left and the
indirect parametrisation (right) that uses mixing rules. The profiles show similar qualitative
trends.

Following the results from section 7.2.2, a set of mixing rules were defined in chapter
5, section 5.4 using the isostress assumption. This section serves to validate these mixing
rules such that, aside from the compaction profiles, stress profiles can be predicted for
powder mixtures. The simulation results in Fig. 7.16 and 7.17 show that applying the
mixing rules gives an accuracy similar to the layered approach. The L1 loss function varies
from 2.0 to 13.8% with a mean of 4.8%, which is almost identical to the accuracy of the
bilayer simulations. This validates that the proposed mixing rules can be used to predict the
compaction curve of powder mixtures.

Although the mixing rules are able to predict the most essential compaction property, the
motivation for using mixing rules was to obtain more detailed information about the stress
distribution within mixed-powder tablets. To verify whether the mixing rules are also able to
predict the correct stress profiles, the stress profiles were compared to those predicted by the
direct parametrisation. Fig. 7.18 and 7.19 show a side-by-side comparison of the predicted
Mises stress profiles at maximum compression and after decompression, respectively. The
stress profiles resulting from the direct and indirect parametrisations produce a similar range
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Fig. 7.19 Stress profiles after decompression for the direct parametrisation (left and the
indirect parametrisation (right) that uses mixing rules. The profiles show similar qualitative
trends.

of stress values. The stress profiles themselves differ but produce the same trends as a
function of tablet composition. For example, the low-stress region in the middle of the tablet
near the die-wall shrinks for tablets with more DCPD. Therefore, the indirect parametrisation
using mixing rules can indeed be used as a qualitative tool to asses the effect of tablet
composition on the internal stresses of the tablet. Absolute values within the stress profiles
should however be interpreted with caution due to their dependence on the mesh size.



Chapter 8

Conclusions and outlook

8.1 Conclusion

The overarching goal was to develop an efficient numerical methodology to predict the
compaction profiles of arbitrary powder mixtures.

The first step towards this goal was parametrising the FEM model using experimental data.
Powder mixtures with micro-crystalline cellulose (MCC) and dibasic calcium phosphate
dihydrate (DCPD) were used as a model system. An automated work-flow, requiring
minimal user input, has been developed to extract density-dependent elastic and Drucker-
Prager Cap (dDPC) parameters from the experimental data. FEM simulation using this
parametrisation predicted the experimental compaction curve with an expected error of 2.5%
of the maximum compaction pressure, with a range from 0.8 to 5.7%. A sensitivity analysis
of the parametrisation further demonstrated that the parametrisation is stable even when only
a single observation is used per target density, giving a change in error that is similar to the
experimental variability of 1 to 2% of the maximum compaction pressure. We therefore
conclude having developed a single parametrisation method capable of describing a variety
of distinct materials.

The second step towards our goal was to find out how the mixture components interact
by simulating a number of powder beds with segregated layers of MCC and DCPD. Given a
certain spatial arrangement of two pure powders within a single powder bed, e.g. vertical
layers or a staircase pattern, the variation of that arrangement with the softer material (here
MCC) closer to the die-wall appears to give a lower ratio of residual radial stress to maximum
axial stress. This trend may be used to reduce the residual radial pressure, and thus the
chance of defects, for layered tablets. Moreover, it was discovered that the compaction of a
powder bed with strictly horizontal layers resembles the compaction of the homogeneous
powder mixture with the same composition. Simulations with two horizontal layers predicted
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the compaction curves of the mixtures with an expected error of 4.5% of the maximum
compaction pressure with a range from 1.4 to 14.0%. The fact that horizontal layers are
representative of the entire mixture suggests that the stress is isotropically distributed between
the materials. This implies the existence of a representative volume element for the powder
mixtures, which further implies that the stress variations caused by the difference in material
properties average out at a sufficiently small length scale to justify a continuum representation
of the powder. This leads to the conclusion that MCC and DCPD interact according to
isostress conditions when mixed.

The final step was to construct a set of mixing rules that successfully predicts the
parametrisation of a mixture using only the pure-component parametrisations. Mixing rules
were defined using the aforementioned isostress condition. Elastic and dDPC parameters
of the mixtures were then generated using these mixing rules and the parametrisations
for pure MCC and DCPD. FEM simulations using the generated parameters predicted
the compaction curves of the mixtures with an expected error of 4.8% of the maximum
compaction pressure with a range from 2.0 to 13.8%. The stress distributions resulting from
the different parametrisations, i.e. those using experimental data directly or those using a
mixing rule, were compared. Stress distributions within the tablets were found to differ but
show the same trends when changing the tablet composition. We thus conclude that the
proposed mixing rules are can be used to accurately predict the compaction behaviour of
powder mixtures using only data of the respective pure components.

Tensile strengths and in-die residual radial stresses obtained from the FEM simulations
systematically overestimate experimental values more as the DCPD content of the powder
increases. Compressive yield was the dominant yielding mode at tablet failure. The overesti-
mation of the tensile strengths was hypothesised to result from the history-independence of
the compression-yield surface as the compaction curves themselves are not overestimated. It
is suggested that, upon a second compression, the prior fragmentation of particles has caused
a change in the location of the yield surface. This could cause an overestimation of the yield
strength for tablets with a higher fraction of DCPD as DCPD is a much more brittle material
than MCC.

8.2 Outlook

By far the most interesting follow-up of this study would be to validate the proposed mixing
rules for ternary and quaternary mixtures. The mixing rules are defined for an arbitrary
number of components, making the current methodology straightforward to extend to many-
component mixtures. Nonetheless, the generalised form of the mixing rules remain to
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be validated for more than two components. Furthermore, it may not be possible to get
single-component compaction data for some materials. Additional rules that derive single-
component parameters from a mixture, if the other component parameters are known, would
therefore benefit the applicability of the mixing rules. Moreover, the mixing rules should
be validated for a wider range of powder materials, as the current study only considered
two types of material behaviour (plastic and brittle) as well as powders with particles of
approximately equal size. A validation against particles of different shapes is also necessary.
If more extensive validation of the mixing rules hold, a database of single-component
experimental data could be used to predict the compaction behaviour of any resulting powder
mixture.

The direct parametrisation would improve most notably by the addition of a nonlinear
elasticity law. The decompression part of the compaction curve is the main source of error
and shows nonlinear elastic behaviour. Furthermore, nonlinear elasticity may reduce the
overestimation of the residual radial stress for high-density tablets. To avoid interference
with other parts of the parametrisation and minimize additional effort, we recommend using
the modified compaction experiments as suggested by Mazel et al. to parametrise nonlinear
elasticity.[32]

Finally, the current parametrisation remains a continuum description and is incapable of
describing some of the more nuanced physics of powder compaction. Physical phenomena
that the current FEM model cannot describe are the exact moment of tablet failure (fracture),
nonlinear recovery (nonlinear elasticity), and changes of the mechanical behaviour that
result from changes in the dwell-time or precompression conditions (visco-elasticity). A
bottom-up parametrisation of the FEM model may improve the description of these physical
phenomena. For example, Gao et al. used the Discrete Element Method (DEM) to predict
compaction behaviour and were able to describe the nonlinear recovery of the powder.[62]
DEM can also be used to generate initial velocity distribution for FEM simulations of
more dynamic problems such as roll compaction.[63] However, DEM still has difficulty to
accurately describe the entire range of compaction densities because DEM neglects many-
body interactions. For this reason, a number of studies used multi-particle FEM instead,
where each particle is given a mesh of its own, to study powder compaction.[64–68] Two
of these studies were able to derive DPC model parameters from MPFEM simulations that
can then be used to do FEM simulations on a larger scale. [64, 67] Despite its successes, the
computational cost of MPFEM remains prohibitively high for routine applications in industry.
A promising compromise between DEM and MPFEM, both in accuracy and computation
cost, may be a simulation method that applies the many-body contact laws as proposed by
Gonzalez.[69]
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powder compaction using multi particle and continuum media approaches. Powder
Technol., 271:238–247, Feb 2015.



72 References

[65] Fen Huang, Xizhong An, Yuxi Zhang, and A. B. Yu. Multi-particle FEM simulation
of 2D compaction on binary Al/SiC composite powders. Powder Technol., 314:39–48,
Jun 2017.

[66] B. Yohannes, M. Gonzalez, A. Abebe, O. Sprockel, F. Nikfar, S. Kiang, and A. M.
Cuitiño. Discrete particle modeling and micromechanical characterization of bilayer
tablet compaction. Int. J. Pharm., 529(1):597–607, Aug 2017.

[67] Peter Loidolt, Manfred H. Ulz, and Johannes Khinast. Modeling yield properties of
compacted powder using a multi-particle finite element model with cohesive contacts.
Powder Technol., 336:426–440, Aug 2018.

[68] Ahmet Demirtas and Jerry Klinzing. Understanding die compaction of hollow spheres
using the multi-particle finite element method (MPFEM). Powder Technol., Jun 2021.

[69] Marcial Gonzalez. Generalized loading-unloading contact laws for elasto-plastic
spheres with bonding strength. J. Mech. Phys. Solids, 122:633–656, Jan 2019.

View publication stats

https://www.researchgate.net/publication/384320045

	Table of contents
	1 Introduction
	1.1 Introduction

	2 Literature review
	2.1 The Drucker-Prager cap (DPC) model for compaction of pharmaceutical powders
	2.1.1 Model introduction and initial validation studies
	2.1.2 Extension to density-dependent material properties
	2.1.3 Studies on variations in punch geometry and friction
	2.1.4 Application in 3D crushing simulations

	2.2 Improvements of the density-dependent DPC model
	2.2.1 Parameter sensitivity studies
	2.2.2 Parameter extrapolations
	2.2.3 Visco-elastic behaviour

	2.3 Predicting compacted properties of powder mixtures

	3 Experiment set-up and preprocessing
	3.1 Choice of tablet materials
	3.2 Uniaxial tablet compaction
	3.3 Automated preprocessing
	3.4 Extension of compaction curves
	3.5 Quantitative comparison of compaction curves
	3.6 Die wall friction
	3.7 True densities
	3.8 Tensile strengths from crushing experiments

	4 Defining material properties (direct parametrisation)
	4.1 Density-dependent Drucker-Prager Cap (dDPC) model
	4.2 Cohesion and internal friction angle
	4.3 Elastic parameters
	4.4 Relative density
	4.5 Plastic parameters
	4.6 Fitting and extrapolating the DPC parameters

	5 Estimation of mixture properties (indirect parametrisation)
	5.1 True density and volume fraction
	5.2 Reynolds et al. model
	5.3 Layered or (microscopically-)segregated tablets
	5.4 Mixing rules

	6 FEM and numerical modelling details
	6.1 Geometry and meshing
	6.2 Numerical integration
	6.3 Powder properties and subroutine
	6.4 Output

	7 Results and discussion
	7.1 Direct parametrisation
	7.1.1 Validation of the direct method
	7.1.2 Qualitative identification of tablet defects
	7.1.3 Evaluation of crushing simulations

	7.2 Indirect parametrisation (layered)
	7.2.1 Validation of the indirect layered method
	7.2.2 Implications for the mixing model
	7.2.3 The effect of layer arrangement on the radial stress

	7.3 Indirect parametrisation (mixed)

	8 Conclusions and outlook
	8.1 Conclusion
	8.2 Outlook

	References

