

EVALUATION OF THE PERFORMANCE OF AN EXTERNAL LUBRICATION

SYSTEM IMPLEMENTED IN A COMPACTION SIMULATOR

<u>C. de Backere¹, V. Vanhoorne¹, C. Vervaet¹</u>

¹Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium

1. Introduction

- Internal lubrication is often associated with decreasing tensile strengths and increasing disintegration times.
- Using external lubrication, the lubricant is sprayed on tablet tooling, thereby minimizing the negative effects involved with internal blending of the lubricant.

2. Objective

 Evaluation of the impact of an external lubrication system, implemented in a compaction simulator, on the tableting process and tablet quality.

3. Material & Methods

Styl'One Evolution compaction simulator (Medelpharm, Beynost, France)

Tableting

Constant settings			
Tooling	Euro B, Ø 10mm, flat faced		
Tablet weight	250 mg	325 mg	
Simulated Modul P speed	40 rpm		
Pre compression force	2 kN		
Variable settings			
Main compression force (MCF)	5 kN	20 kN	

External lubrication system

Factors

- Spray time (0 1000 ms)
- Pressure of the compressed air (1 3 5 bar)

Fig. 1. Comparison of ejection forces between non-lubricated (red bars), extenally lubricated (green bars) and internally lubricated (blue bars) tablets.

Ejection force:

- > Decrease in ejection force dependent on spray time and pressure of compressed air until plateau has been reached
- Equal ejection forces for external and internal lubrication can be reached:
 - <u>MCC-, DCP- or lactose-based formulations:</u> spray time needed of \geq 350 ms
 - <u>Mannitol- or MTP-based formulations</u>: spray time needed of \geq 400 ms, pressure of compressed air \geq 3 bar
- \succ Higher spray time (\geq 500 ms): no further decrease of ejection force

Formulations

➢ 90 % Filler + 10 % active pharmaceutical ingredient (API)

Filler	API
Microcrystalline cellulose (MCC)	Caffeine anhydrous powder
Lactose	Micronized metoprolol tartrate (MTP)
Mannitol	
Dicalcium phosphate (DCP)	

Non-lubricated blends: used for external lubrication with MgSt as lubricant

Internally lubricated blends:

- Concentration of MgSt: 0.75 % and/or 1.25 %
- 2 paddle speeds (PS) of the forced feeder were used: 60 rpm (20% PS) and 300 rpm (100% PS)
- Inductively coupled plasma optical emission spectrometry (ICP-OES) was used to determine the concentration of MgSt in externally lubricated tablets. (Varian Vista-MPX, Varian, Palo Alto, CA)

5. Conclusion

Fig. 2. Comparison of tensile strengths between non-lubricated (red bars), extenally lubricated (green bars) and internally lubricated (blue bars) tablets.

Tensile strength:

- Lower tensile strength of internally lubricated tablets compared to non-lubricated or externally lubricated tablets
- No influence of spray time, pressure of the compressed air

Fig. 3. Comparison of disintegration times between non-lubricated (red bars), extenally lubricated (green bars) and internally lubricated (blue bars) tablets.

Disintegration time:

Higher disintegration time of internally lubricated tablets compared to non-lubricated or externally lubricated tablets
No influence of spray time, pressure of the compressed air

<u>Concentration of MgSt (mg/tab)</u> MCC – MTP (90/10) (MCF: 5 kN)

3 bar

5 bar

 External lubrication proved highly valuable for tableting of lubricantsensitive formulations as low ejection forces were obtained without lowering the tensile strength and/or prolonging the disintegration time.

This research was financially supported by the FWO Flanders (grant: 1S88518N). The authors acknowledge the co-workers of Medelpharm for their contribution to the study.

Contact: Cedrine.deBackere@UGent.be

1 bar **Concentration of Mgst**:

- Increasing amount of MgSt when using higher spray time and atomizing pressure
- Higher spray times and higher atomizing pressure: no further increase in concentration
- Fig. 4. Concentration of MgSt (mg/tab) as a function of spray time and pressure of the compressed air.