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MATERIALS AND METHODS
The model development followed a structured data science workflow1. First, 
business and process understanding were established to define prediction 
targets (CQAs). This was followed by data understanding, including explora-
tory analysis of datasets with more than 300,000 tableting cycles, 200 punch 
profiles and 30 machine simulation profiles. During this step, erroneous, im-
plausible or inconsistent records e.g., missing reference values or corrup-
ted sensor streams were identified and excluded. In the data preparation 
phase, relevant force–displacement and tablet energy features like plas-
tic, elastic and ejection energy were extracted, engineered and normalized.  
Subsequently, different machine learning regression models were trai-
ned and benchmarked in the modelling phase. A model performance of R² 
with 0.95 and mean absolute percentage error of 15% was achieved using  

time-separated splits to avoid data leakage. The model was validated with 
an external dataset of  9,364 tablets from 73 blends, using 36 machine and 
67 punch profiles.
In a representative case study, an API-containing customer formulation was 
compressed on a STYL’One Evo equipped with 12 mm round EU-B tooling 
and configured to emulate a KORSCH XL 4004 at 100 min-1 turret speed. 12 
tablets were compressed at a main compaction force ranging from 6.7 to 
13.5 kN. The machine learning model was used to predict the CQAs direct-
ly from compaction data. Destructive reference measurements (hardness, 
weight, diameter, height) were taken on a Kraemer LAB.line P5 tablet tester 
and compared to the predictions. 
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INTRODUCTION AND AIM
Development of solid oral dosage forms depends on timely knowledge of 
critical quality attributes (CQAs) such as tablet hardness, tensile strength, 
solid fraction, and tablet weight. These CQAs are traditionally obtained by 
destructive offline tests that consume material and slow down iteration.  

A machine learning model was trained to predict these properties inline from 
process features during compaction. It enables faster screenings of blends 
and process settings while reducing reliance on destructive end-testing.

RESULTS & DISCUSSION
Using a prediction model reduces reliance on destructive tests and provides 
actionable, early‑stage feedback on hardness, tensile strength, solid frac-
tion, and weight. The relative deviation of predicted hardness vs. measured 
hardness across the validation set is centered around zero percent, but re-
veals increased errors at the boundaries probably caused by training data 
sparsity in extreme regions and historical unsystematic acquisition patterns 
(Figure 1).

The predicted vs. measured scatterplots for an 
API‑containing customer product confirm high ag-
reement in the investigated range (Figures 2 and 3), 
while the graphical user interface illustrates imme-
diate usability in development workflows (Figure 4).

OUTLOOK
Future work will expand and refine the machine learning model prediction by densifying training data in boundary regions, where current predictions are less accurate. Furthermore, adopting an ensemble 
composition of neural networks is expected to improve robustness2. Finally, the CQAs will be expanded to include disintegration time and friability, providing a more comprehensive prediction framework for 
pharmaceutical development.

Figure 2: Predicted vs. measured hardness for an API-con-
taining customer product.

Figure 3: Predicted vs. measured weight for an API-contai-
ning customer product.

Figure 1: Relative deviation of predicted hardness vs. measured hardness for validation set of 9,364 tablets.

Figure 4: View of the graphical user interface (GUI).


