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Abstract: In-die compression analysis is an effective method for the characterization of powder
compressibility. However, physically unreasonable apparent solid fractions above one or apparent
in-die porosities below zero are often calculated for higher compression stresses. One important
reason for this is the neglect of solid compressibility and hence the assumption of a constant solid
density. In this work, the solid compressibility of four pharmaceutical powders with different
deformation behaviour is characterized using mercury porosimetry. The derived bulk moduli are
applied for the calculation of in-die porosities. The change of in-die porosity due to the consideration
of solid compressibility is for instance up to 4% for microcrystalline cellulose at a compression
stress of 400 MPa and thus cannot be neglected for the calculation of in-die porosities. However,
solid compressibility and further uncertainties from, for example the measured solid density and
from the displacement sensors, are difficult or only partially accessible. Therefore, a mathematic term
for the calculation of physically reasonable in-die porosities is introduced. This term can be used for
the extension of common mathematical models, such as the models of Heckel and of Cooper & Eaton.
Additionally, an extended in-die compression function is introduced to precisely describe the entire
range of in-die porosity curves and to enable the successful differentiation and quantification of the
compression behaviour of the investigated pharmaceutical powders.

Keywords: powder compression; tableting; compression equations; solid compressibility; in-die
compression analysis

1. Introduction

Powder compaction is an important production process in diverse industries, such as food,
ceramic and pharmaceutical industry. The prediction of structural and mechanical properties of tablets
based on raw material properties and process parameters is still difficult or rather impossible, although
the powder compaction process was the object of numerous scientific investigations. The main
reason for the incomplete predictability is certainly the still limited process understanding due to
the complexity of the powder compaction process. This complexity can be attributed to various
influencing parameters [1–5], such as the deformation behaviour, the particle size and shape and the
compression stress on the one hand and to different acting micro-processes [6–10], such as particle
rearrangement, elastic and plastic deformation of single particles and particle fragmentation on
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the other hand. These micro-processes do not take place sequentially but occur simultaneously.
The contribution of the single mechanisms depends on material properties and applied process
parameters. Until today, the individual quantitative characterization of each mechanism is challenging.
The deformation behaviour also affects the number of generated, inter-particulate bonds as well as
the bonding forces and thus the resulting structural and mechanical properties of the tablet [11,12].
The missing predictability causes the need for a systematic and comprehensive characterization of
the compression and compaction behaviour of raw materials as prerequisite for a rationally based
formulation and process development.

This study is focused on the characterization of powder compressibility. The compressibility
is defined as the relationship between solid fraction/porosity and compression stress [8]. Several
mathematical models were developed for the description of the compression curves and the derivation
of specific compression parameters. An overview is given by Kawakita and Lüdde [13] and
Celik [14], for example. The main requirement for a suitable process function is the ability to
describe the compression curves of related materials precisely and robustly. The simplest functions are
two-parametric equations, such as the common models of Heckel [15] and of Kawakita and Lüdde [13].
These functions only depict a limited part of the compression curve. In contrast, four-parametric
models enable the description of the entire compression curve. A common four-parametric process
function is the model of Cooper & Eaton [16].

The most common method for the determination of compression curves is the out-of-die analysis
and the resulting compressibility is named out-of-die compressibility. In this case, tablets are produced
by applying different compression stresses and related tablet solid fraction/porosity is determined
after storage of the tablets at defined conditions for a period of time. However, this method is only
applicable with limitations when tablet defects, like lamination or capping, occur. Instrumented tablet
presses, equipped with force and displacement sensors, enable the determination of the compressibility
during compression (in-die compressibility). In this case, solid fraction/porosity is calculated based
on the measured force-displacement curve, taking the tablet mass and its solid density into account.
The main advantage of in-die analysis is that, in the best case, the performance of only one compression
process is sufficient for the comprehensive characterization of powder compressibility. Furthermore,
in-die compressibility can be determined even if tablet defects occur. However, in-die compressibility
is typically shifted to higher solid fractions/lower porosities compared to out-of-die compressibility,
which lead to different specific compression parameters [17–20]. The main reason for the observed
differences is the inclusion of elastic deformation in the case of in-die analysis, while out-of-die
analysis does not take elastic deformation into account as compressed powders relax during and
after unloading. Additionally, physically unreasonable apparent solid fractions above one/apparent
porosities below zero are observed for in-die analysis above certain compression stress levels [21,22].
For this reason, in-die data presented in literature are often limited to lower compression stresses
that may affect derived specific compression parameters [3,19,23]. One reason for the occurrence of
physically unreasonable values is the assumption of a constant solid density [19,21]. The molecular
lattice inside the individual particles deforms elastically during compression as well and this leads to
a decrease of specific solid volume upon compression [21,24–26]. Consequently, solid density increases
with rising compression stress, especially for organic substances. This phenomenon is referred to
as solid compressibility. As one example, Boldyreva showed for paracetamol a decrease in specific
solid volume of approximately 3% at hydrostatic compression of 400 MPa [24]. Although different
researchers mention the influence of solid compressibility as an important influencing factor on in-die
analysis, this phenomenon is scarcely considered. Sun and Grant introduced a term for the correction
of in-die porosity in dependence of the Young’s modulus of the material [17]. They showed that
the deviation between the yield strength derived by in-die analysis and out-of-die analysis increases
with decreasing Young’s modulus. Sun and Grant did not differentiate between elastic deformation
of the bulk and the single particles and solid compressibility. Additionally, Sun and Grant did not
consider the stress-dependency of solid density. The common neglect of the stress-dependency of solid
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density might be explained by the inaccessibility of this phenomenon during powder compression.
The volume change of single crystals can be measured using crystallographic methods, however,
such measurements need to be performed by X-ray diffraction in sufficiently resilient dies. Another
method for the determination of solid compressibility is mercury porosimetry provided that the
single particles are completely enclosed by mercury and that all pores are completely filled with
mercury [27,28].

Further reasons for the occurrence of physically unreasonable solid fractions/porosities are
uncertainties of the compressed mass, of the measured solid density and from the force and
displacement sensors [19,29–31]. Another influencing parameter could be the die diameter, which is
assumed to be constant. However, the expansion of the die was not considered yet. These challenges are
the reason for the still more frequent use of out-of-die compressibility analysis, although in-die analysis
is material and time-saving. Katz et al. introduced a new empirical approach to use the advantages
of both methods [18,20]. They calculated out-of-die compressibility based on in-die compressibility
under consideration of elastic and viscoelastic recovery. The performance of only two compression
experiments, one at relatively low compression stress and one with maximum compression stress,
are sufficient for this approach. This method is consequently not applicable if tablet defects occur.
However, the characterization of the compression behaviour of materials which tend to form defective
tablets is important for formulation and process development. It can be concluded that a method for
the calculation of physically reasonable in-die porosities/solid fractions is needed for establishing
in-die analysis for formulation and process development.

In this study, the influence of solid compressibility and of die expansion on in-die compression
analysis is investigated for pharmaceutical materials with considerably different deformation
behaviour. Additionally, a mathematical term for the pragmatic consideration of solid compressibility
during in-die compression analysis and hence, for the calculation of physically reasonable in-die
porosities is introduced. Its applicability combined with the common compression models of Heckel
and of Cooper & Eaton, as well as an extended in-die compression function are discussed.

2. Theory

Various mathematical models for the description of powder compressibility exist in literature.
Common models in industrial pharmacy are the models of Heckel [15] and of Cooper & Eaton [16],
which are used in this study.

2.1. Model of Heckel

The model of Heckel [15] was originally developed for the compaction of metal powders with
a mainly ductile deformation behaviour. Heckel assumed that the porosity decrease during powder
compaction follows a first order kinetic:

ln
1
ε
= k·σax + A (1)

where ε is the porosity, σax is the axial compression stress and k and A are constants. Heckel found that
the constant k correlates with the reciprocal value of yield strength σ0 for metals and is thus a measure
of the plasticity of a material [32]. Hersey and Rees introduced the term mean yield pressure Py for
this correlation [33]:

k =
1

3σ0
=

1
Py

(2)

2.2. Model of Cooper & Eaton

Cooper and Eaton describe the compression process of ceramic powders by two steps: the filling
of inter-particulate pores in the size range similar to the particle size and the filling of smaller pores [16].
They hypothesize particle rearrangement as the main deformation mechanism responsible for the first
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step and plastic deformation and particle fragmentation as the main deformation mechanisms of the
second step. Cooper and Eaton consider the volume change in dependence on compression stress and
used two exponential terms for the description of both mechanisms:

V∗ =
V0 − V

V0 − V∞
= a1 exp

(
− k1

σax

)
+ a2 exp

(
− k2

σax

)
(3)

where V* is the relative volume change, V0 is the initial volume, V∞ is the powder volume at infinite
compression stress and a1, a2, k1 and k2 are constants, with the boundary condition of the sum of a1

and a2 equalling one. a1 and a2 are the fractions of theoretically possible compression and describe
the maximum possible volume reduction attributed to each respective mechanism. k1 and k2 are
characteristic compression values, which indicate the stress range, in which the particular mechanism
dominates the volume change. In this study, the initial specific volume V0 is calculated using the data
of the first measurement point of the force-displacement curve. The specific solid volume determined
by helium pycnometry is used as specific volume at infinite compression stress V∞.

3. Materials

Microcrystalline cellulose (MCC, Vivapur® 102, JRS Pharma, Rosenberg, Germany), anhydrous
lactose (Lac, Lactose Anhydrous NF DT, Sheffield Bio Science, Norwich, NY, USA), anhydrous
dicalcium phosphate (DCPA, DI-CAFOS® A150, Chemische Fabrik Budenheim, Budenheim, Germany)
and paracetamol (Para, Novartis Pharma AG, Basel, Switzerland) were selected as pharmaceutical
materials while magnesium stearate (Faci, Carasco, Italy) was used as lubricant.

The characteristic particle sizes of MCC, Lac and DCPA are in a comparable range but differ
in width, while Para is clearly finer (Table 1). The particle shape of all model materials is irregular
(Figure 1). MCC mainly consists of elongated primary particles and of approximately spherical
agglomerates or aggregates. The primary particles of Para are approximately rectangular. In contrast,
Lac and DCPA consist of irregularly shaped aggregates and agglomerates.

Table 1. Characteristic particle sizes and solid density.

Material x10 [µm] x50 [µm] x90 [µm] ρs [g/cm3]

MCC 36 125 261 1.5537 ± 0.0080
Para 4 25 72 1.2863 ± 0.0001
Lac 12 147 342 1.5524 ± 0.0077

DCPA 77 190 302 2.7718 ± 0.0097
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Figure 1. Particle images of the pharmaceutical powders MCC, Lac, DCPA and Para determined by
scanning electron microscopy.
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4. Methods

4.1. Powder Characterization

Solid density of the powders was determined using the helium pycnometer ULTRAPYC 1200
(Quantachrome Instruments, Boynton Beach, FL, USA). The powders were dried under vacuum
for 24 h before the measurement. Double measurements with 10 measurement points each were
performed and the mean values (Table 1) were used for the calculation of apparent in-die porosities.
Additionally, the true density of paracetamol was determined using the X-ray powder diffraction
(Bruker D8 Advance, Billerica, MA, USA). Three measurements were performed at room temperature
and Rietveld refinement was applied. Furthermore, particle size analysis was performed using the
laser light diffraction instrument HELOS (Sympatec, Clausthal-Zellerfeld, Germany) in combination
with the dry dispersion unit RODOS for the excipients and the wet dispersion unit CUVETTE for Para.

4.2. Determination of the Bulk Modulus

The solid compressibility of the powders was characterized using the mercury porosimeter
PoreMaster® GT60 (Quantachrome Instruments, Boynton Beach, FL, USA). The penetrometer with
a volume of 0.5 cm3 was filled with an appropriate amount of powder. The low pressure operation
(up to 344 kPa) was used for the filling of the penetrometer with mercury and is not considered for
the determination of solid compressibility because of the probably incomplete enclosure of the single
particles by mercury. The maximum applied pressure of the high pressure operation was 414 MPa.
Four samples per material were characterized and high pressure operation was repeated five times per
sample to ensure elastic deformation as the reason for volume changes. Before the analysis, several
blank measurements were performed for the consideration of the volume change due to the elastic
deformation of the penetrometer and of mercury.

The elastic compressibility of an isotropic material under hydrostatic pressure can be described
by the bulk modulus K:

K = −V0
dp
dV

(4)

where V0 is the volume at ambient pressure and p is the hydrostatic pressure and dp can be replaced by
p−p0 and dV by V−V0. p0 is the atmospheric pressure and can be neglected for powder compression.
This results in

VS(p)
VS,0

= 1 − p
K

(5)

where VS is the specific solid volume dependent on the hydrostatic pressure and VS,0 is the specific
solid volume at atmospheric pressure. The bulk modulus is hence the reciprocal of the slope of the
measured volume change during mercury intrusion and was determined by linear regression using
the software Excel 2010with the solver add-in (Microsoft, Redmond, WA, USA). It has to be noted that
not the whole pressure range is considered because of non-linearity at lower pressure (frequently <
150 MPa), which indicates the presence of still unfilled pores and the still insufficient enclosure of the
single particles by mercury. The bulk modulus was determined for all performed measurements and
the average value was calculated per material.

4.3. Tableting

Compaction experiments were performed using the compaction simulator Styl’One Evolution
(MEDEL’PHARM, Beynost, France), which is equipped with force and displacement sensors. The die
and the punches were manually pre-lubricated with magnesium stearate. 450 mg powder of each
MCC, Lac and Para as well as 900 mg of DCPA were compressed (n = 6) with a maximum compression
stress of 400 MPa using 11.28 mm flat-faced, round punches. The compression profile of a camshaft
was simulated with a maximum compression velocity of approximately 20 mm/s. The weight
of the tablets was measured after compaction and in-die analysis was performed considering
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machine deformation. Additionally, experiments using an instrumented die (11.28 mm Euro B)
(MEDEL’PHARM, Beynost, France) were performed for the determination of the radial die wall stress
with a maximum compression stress of 300 MPa. The stress ratio, which is defined as the ratio between
radial and axial stress, is calculated based on the maximal axial and radial stresses.

The tablets were stored under constant ambient conditions for at least 24 h. Afterwards, the weight
of the tablets (n = 20) was measured and geometrical dimensions were determined using the tablet
tester MultiTest 50 FT (Dr. Schleuniger, Aesch, Switzerland). The data were used for the calculation of
out-of-die tablet porosity.

4.4. Application of the Compression Equations

The fitting of the models to experimental data was performed using regression by minimization
the sum of squared errors. The software Excel 2010 (Microsoft, Redmond, WA, USA) was used
for the fitting of the models of Heckel and of Cooper & Eaton. The fitting of the extended in-die
compression function was performed using MATLAB (Version: R2015b, MathWorks, Natick, MA,
USA). Additionally, out-of-die Heckel analysis was performed by application of the model of Heckel
to the out-of-die porosities between 200 MPa and 400 MPa.

4.5. Estimation of Radial Die Expansion

The elastic expansion of the die in radial direction during powder compression is estimated under
assumption of rotationally symmetric and height-independent stress conditions inside the die wall
based on Hook’s law [34]:

εrad =
σrad

E
− ν·σtan

E
(6)

where εrad is the elastic strain in radial direction, σrad is the stress in radial direction, σtan is the elastic
stress in tangential direction, E is the Young’s modulus and ν the Poisson’s ratio. The radial stress was
measured using an instrumented die, while the tangential stress for a cylinder with a thick wall (ra/ri

≥ 1.2 according to DIN 2413) can be estimated as follows [35]:

σtan =
r2

i ·p
r2

a − r2
i

(
1 +

r2
a

r2

)
(7)

where ri is the inner radius, ra is the outer radius and p is the inner pressure acting on the die wall.
The estimation of die expansion was performed for Euro D compression tools with an inner radius
of 5.64 mm and an outer radius of 19.05 mm using a Young’s modulus of 210 GPa and a Poisson’s
ratio of 0.28, which are typical values of stainless steel. The influence of the die holder and the groove
are neglected.

5. Results and Discussion

5.1. Compression Behavior of the Model Materials

The in-die compression curves of the four materials differ considerably (Figure 2). The slope of the
curve of Para is the highest at the beginning of the compression process (below approximately 50 MPa)
indicating the lowest resistance against compression. In contrast, DCPA shows the overall highest
apparent in-die porosity and the lowest porosity decrease. Hence, the effective compression of DCPA
is the lowest. MCC and Lac show behaviour in between that of the aforementioned. Furthermore,
it has to be noted that physically not reasonable negative apparent in-die porosities are reached for
Para and MCC at compression stresses above 200 MPa. The reasons for the occurrence of negative
in-die porosities are discussed in the further sections.
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5.2. Reasons for Apparent in-Die Porosities Below Zero

A fundamental parameter for the calculation of porosities is the solid density, which is commonly
determined by helium pycnometry. Helium pycnometry is applicable regardless of the degree of
crystallinity in contrast to X-ray diffraction. However, variations of the solid density determined by
helium pycnometry are often reported due to the influence of material properties and measurement
conditions [31,36,37]. The solid density of Para determined by helium pycnometry is slightly lower
(1.2863 ± 0.001 g/cm3) compared to the true density determined by X-ray diffraction (1.2936 ± 0.0027
g/cm3). The slightly lower density determined by helium pycnometry might be explained by the
consideration of closed intra-particulate pores and flaws, while these are not taken into account
by evaluation of X-ray diffraction. The applied high stress during powder compression causes
particle deformation and fragmentation, which may lead to the disappearance of closed pores and
flaws. Therefore, the usage of the true density determined by X-ray diffraction seems to be useful
for powder compression. Since often the solid density determined by helium pycnometry is used,
it is necessary to consider the influence of the differences between solid density and true density
on the calculation of in-die porosities. The lower solid density determined by helium pycnometry
causes a slight shift of the apparent in-die porosity εapp,He curve of Para to slightly lower porosities
compared to the curve calculated using the true density determined by X-ray diffraction (εapp,XRD)
(Figure 3). However, in both cases physically not reasonable negative apparent in-die porosities are
reached at high compression stresses. The apparent in-die porosities are calculated based on the
assumption of a constant solid density during powder compression, although solid compressibility
causes the increase of solid density with rising compression stress [19,21], especially for organic
materials. Therefore, the bulk modulus measured by mercury porosimetry (Table 2) is used for
the calculation of a stress-dependent specific solid volume according to Equation (5) based on the
specific solid volume determined by helium pycnometry. The resulting in-die compression curve εc,Hg

is clearly shifted to the positive porosity range, especially at compression stresses above 200 MPa,
as Figure 3 shows exemplarily for Para. The same trend is found for MCC and Lac (Table 2). The bulk
modulus of the inorganic DCPA could not be determined by mercury porosimetry because of reaching
the detection limit. The bulk modulus of DCPA is hence to be expected clearly higher compared
to the three organic materials. The bulk modulus of DCPA could be alternatively calculated using
the Young’s modulus and Poisson’s ratio. Beam bending of compactates or double compaction with
a fully instrumented compaction simulator can be used for the determination of Young’s modulus and
Poisson’s ratio of compactates with defined porosities [38–40]. Extrapolation to zero porosity can then
be applied for the derivation of properties of the solid, which are needed for the calculation of the bulk
modulus. Additionally, high-pressure diffraction studies of single particles could be performed [24].
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Figure 3. Apparent in-die compressibility of Para calculated using the solid density determined by
helium pycnometry εapp,He and by X-ray diffraction εapp,XRD and correction of the apparent in-die
compressibility εc,Hg with the bulk modulus determined by mercury porosimetry. The filled areas mark
the 95% confidence interval regarding density εapp,He and εapp,XRD or rather the bulk modulus εc,Hg.

Table 2. Bulk modulus determined by mercury porosimetry and minimal in-die porosities.

Material Bulk Modulus K [GPa]
Min. Apparent in-die porosity

εapp,He,min [-]
Min. in-die porosity

εc,Hg,min [-]

MCC 10.22 ± 1.02 −0.035 0.006
Para 14.93 ± 3.67 −0.023 0.005
Lac 27.07 ± 7.13 0.001 0.016

DCPA - 0.256 -

The minimal in-die porosities change by approximately 3% for Para, by 4% for MCC and by
1.7% for Lac. Accordingly, solid compressibility has a significant effect during powder compression
and should be considered for the calculation of in-die porosities. The porosity change of DCPA
is expected to be considerably lower than 1.7%. However, the transferability of the bulk modulus
determined by hydrostatic compression to uniaxial compression might be limited. The stresses acting
on the single particles during uniaxial powder compression are unknown and, additionally, powder
compression is anisotropic and dynamic, whereas material bulk moduli are generally measured at
defined pressures and thermodynamic equilibrium. In addition, the stress directed to the die wall
is complex and depends on material and process parameters [41,42]. Additionally, the accuracy of
mercury porosimetry for the determination of the bulk modulus and uncertainties of the measured
solid density by helium pycnometry has to be considered.

An additional influencing factor could be the elastic expansion of the die, which is dependent on
the radial stress acting on the die wall. The radial stress during powder compression is dependent on
the stress ratio between radial and axial compression stress, which is in turn determined by the axial
compression stress and the used material in combination with its deformation behaviour (Table 3).
The stress ratio in the range from approximately 0.5 MPa to 400 MPa is the highest for MCC and
Para because of the ductile and elastic behaviour of these materials [43] leading to the largest die
expansion (Figure 4). The stress ratio of Lac is in the medium range, while the lowest stress ratio
was found for DCPA (Table 3), which correlates well with the findings of Abdel-Hamid and Betz [43].
Accordingly, the expansion of the die, calculated using Equations (6) and (7), is lower for Lac and
DCPA. For the direct comparison of the influence of the expansion of the die diameter with the effect
of solid compressibility, the die expansion coefficient was introduced and defined as the reciprocal of
the slope of the die expansion curves (Figure 4). The die expansion coefficients are considerably larger
than the bulk moduli (Tables 2 and 3). Die expansion leads to small changes of the calculated in-die
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porosities, which are additionally recognizable by the estimated difference of porosity at maximum
compression stress of 400 MPa, comparing in-die porosity determined with die expansion to in-die
porosity determined without die expansion (Table 3). The influence of die expansion is therefore
negligible for the calculation of in-die porosities.

Table 3. Stress ratio, die expansion coefficient and porosity change due to die expansion (n = 6).

Material Stress Ratio [-] Die Expansion Coefficient [GPa] Difference of Porosity at 400 MPa [-]

MCC 0.47–0.81 207 ± 4 3.7 × 10−6

Para 0.50–0.85 196 ± 3 4.2 × 10−6

Lac 0.45–0.71 237 ± 4 2.9 × 10−6

DCPA 0.21–0.43 382 ± 5 1.1 × 10−6
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Other influencing parameters for the calculation of apparent in-die porosity could be
mass variations and the accuracy of the displacement sensors, as other studies showed [30,31].
The experimental determination of all uncertainties for the calculation of in-die porosities is
fundamentally feasible but highly expensive. However, in-die compression analysis is an advantageous
method for the characterization of powder compressibility and can be applied as well for materials,
which tend to form defective tablets. For this reason, a pragmatic mathematical approach for
consideration of the physical effect of solid compressibility and other less important mechanisms
is introduced.

5.3. Introduction of the Solid Compressibility Term

Equation (5) is valid for the volume change under hydrostatic compression. For uniaxial powder
compression, the hydrostatic pressure can be approximated as follows [44]:

p =
σax + 2·σrad

3
(8)

where σax is the stress in axial direction and σrad is the stress in radial direction. The axial and radial
stresses acting on the single particles during uniaxial powder compression are unknown and cannot be
measured yet due to the highly complex stress state inside the powder. In reality, a stress distribution
exists due to the bulk structure. Usually, instrumented tablet presses enable only the measurement
of the overall axial stress acting on the powder. The overall radial stress can be determined using
an instrumented die. However, the usage of instrumented dies is not common because of difficulties
in design, operation and data evaluation [45]. The estimation of the stresses acting on the single
particles based on the measured data is not possible, yet, because of the complexity of influencing
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parameters. Therefore, the hydrostatic pressure is approximated by the overall axial compression
stress acting on the powder. Furthermore, investigations of the compressibility of single crystals by
hydrostatic compression with high pressures up to several GPa show the decrease of specific solid
volume with rising hydrostatic pressure according to the Murnaghan equation [46]. This equation
implies a stress dependency of the bulk modulus. The stress range applied for tableting is considerably
lower compared to the applied stresses for single crystal analysis. Thus, a constant bulk modulus
is assumed within the context of this investigation. The bulk modulus K of Equation (5) is replaced
by the elastic compressibility factor C, which mainly comprises the influence of solid compressibility.
According to these assumptions Equation (5) is modified as follows:

VS(σax) = VS,0·
(

1 − σax

C

)
(9)

where σax is the overall axial compression stress acting on the powder and C is here referred to as
elastic compressibility factor. The in-die porosity under consideration of solid compressibility εc is
given by

εc(σax) = 1 − Vs(σax)

Vb(σax)
(10)

Inserting Equation (9) in Equation (10) leads to the following mathematical relation for the in-die
porosity under consideration of solid compressibility εc

εc(σax) = 1 −
VS,0·

(
1 − σax

C
)

Vb(σax)
= 1 − Vs,0

Vb(σax)
+

VS,0·σax

Vb(σax)·C
= εapp(σax) +

VS,0·σax

Vb(σax)·C
(11)

C describes mainly the elastic compressibility of the solid under uniaxial compression and is associated
with the applied determination method. Therefore, C is not a directly measured material property and
cannot be equated with the bulk modulus of single crystals. The solid compressibility term can be
included in common compression equations, such as the model of Heckel and enable the determination
of specific compression parameters under the consideration of solid compressibility.

5.4. Extension of the Model of Heckel by the Solid Compressibility Term

For the application of the solid compressibility term, the Heckel model (Equation (1)) is
transformed into its exponential form:

εapp(σax) = e
(− σax

Py −A)
(12)

The limit value of the exponential term is zero and this is the necessary condition for the
determination of the elastic compressibility factor C, which is determined by fitting of Equations
(11) and (12) to the apparent in-die porosity curve from compaction experiments. Further details of the
fitting procedure are summarized in chapter 4.4.

The elastic compressibility factor C, determined by the mathematical approach, is comparable
with the bulk modulus K characterized by mercury porosimetry for Para and MCC (Table 4). The elastic
compressibility factor of Lac is somewhat lower compared to the bulk modulus, so that the influence
of solid compressibility is slightly overestimated. One possible reason for the deviation is the
mathematical method for the determination of C, which is strongly dependent on the applied models.
Additionally, the transferability of the bulk modulus determined by hydrostatic compression with
a defined pressure to uniaxial powder compression with an unknown and complex stress distribution
on the single particles might be limited. Moreover, the back-calculated elastic compressibility factor
is also influenced by other mechanisms like die expansion. For DCPA, C is considerably larger than
the values for the other three materials which correlates well with the expectation based on mercury
porosimetry. The correlation of the elastic compressibility factor with the bulk modulus is generally
good and confirms the suitability of the introduced mathematical approach for the consideration of
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the effect of solid compressibility. The introduced approach provides an inexpensive method for the
correction of negative apparent in-die porosities and thus for the convergence of the apparent in-die
porosity to the real in-die porosity, which is not directly accessible.

Table 4. Bulk modulus determined by mercury porosimetry and elastic compressibility factors derived
by extension of the models of Heckel and of Cooper & Eaton with the solid compressibility term and
by the extended in-die compression function.

Material Bulk Modulus K [GPa] CHeckel [GPa] CCooper &Eaton [GPa] CExtended function [GPa]

MCC 10.22 ± 1.02 11.51 ± 0.17 11.87 ± 0.12 11.74 ± 0.30
Para 14.93 ± 3.67 15.22 ± 0.07 18.41 ± 0.74 15.97 ± 1.00
Lac 27.07 ± 7.13 14.09 ± 0.03 - 14.80 ± 1.46

DCPA - 150.02 ± 17.24 - 277.06 ± 10.02

The consideration of C for the calculation of in-die porosities leads to a considerable shift of
the Heckel plot to lower values for Para, MCC and Lac (Figure 5). The linear region and by that
the applicability of the plot in general, is extended to higher compression stresses, which enables
the application of the Heckel model to a more suitable fit range When applying the correction the
whole pressure range can be used for the evaluation of Para and MCC data. However, the curves are
still bent at maximum compression stress due to the still very low porosities above approximately
350 MPa. The real in-die porosity at high compression stresses is expected to be slightly higher but is
not experimentally accessible. Additionally, the slopes of the plots become smaller and this results in
higher mean yield pressures (Table 5). However, the difference of Py and Py,c is very small for DCPA
because of the high elastic compressibility factor. The differentiation of the compression behaviour
of the different materials by Py,c is successful. The finding of the highest mean yield pressure for
DCPA, the lowest for MCC and a medium value for Lac correlates well with the structural observation
(Section 5.1) and with literature [23,47,48]. Commonly, the yield pressure is used for the classification of
the plasticity of materials. It is assumed that low mean yield pressures, which indicate a low resistance
against compression, are an indicator for a high plasticity, while the plasticity is decreasing with
increasing mean yield pressure [47]. According to the derived mean yield pressures, MCC and Para
possess the highest plasticity followed by Lac, while DCPA has the lowest plasticity overall (Table 5).
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Pharmaceutics 2019, 11, 121 12 of 19

Table 5. Parameters derived by Heckel analysis (n = 6).

Material Py [MPa] Fit Range
With Solid Compressibility Term

Py,T [MPa]
Py,c [MPa] Fit Range R2 [-]

Entire Curve

MCC 72.6 ± 1.0 10–50% σmax 89.3 ± 1.2 40–90% σmax 0.9860 543.5
Para 93.5 ± 1.2 6–56% σmax 121.2 ± 2.7 30–80% σmax 0.9739 -
Lac 145.6 ± 0.5 25–75% σmax 194.5 ± 0.6 40–90% σmax 0.9935 233.1

DCPA 765.4 ± 1.5 38–88% σmax 771.2 ± 2.5 40–90% σmax 0.9313 1062.6

It can be concluded that the quantification and differentiation of the resistance of the powder
against compression by Heckel analysis is successful. However, the Heckel model describes only the
linear region of the Heckel plot and not the entire compression curve. Deviations are visible in the
low and high compression stress range, which are also the reason for the overall low goodness-of-fit,
if the whole compression curve is considered. The comprehensive differentiation of the compressibility
requires the description of the entire in-die compression curves. A model, which is better suited for
the description of the entire curve is the model of Cooper & Eaton [16].

5.5. Extension of the Model of Cooper & Eaton by the Solid Compressibility Term

The criterion for the correction by the solid compressibility term (Equation (11)) when applying
the model of Cooper & Eaton is to keep the relative volume change in the considered compression
stress range (up to 400 MPa) lower than the limiting value of one. The model of Cooper & Eaton
consists of two exponential terms, which are, however, able to describe relative volume changes above
one. Therefore, the fitting of the model including the solid compressibility term was performed using
the constraint: V* ≤ 1. Thus, in the considered case, the solid compressibility term is only applicable if
the apparent relative volume change converges to values above one, which is only the case for MCC
and Para (Figure 6). The derived elastic compressibility factors C for Para and MCC are comparable
to the values derived by the model of Heckel and are thus as well in good accordance with the bulk
modulus K (Table 4).
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Figure 6. (a) Apparent and corrected relative volume change for Para and MCC; (b) Relative volume
change and applied model of Cooper & Eaton for Para, MCC, Lac and DCPA.

The four-parametric function of Cooper & Eaton enables the mathematical description of the
whole in-die compression curve. The deviations between experimental data and the model are small for
all four powders (Figure 6) and thus the correlation coefficients are high (Table 6). Obviously, the first
term mainly describes the volume change at low compression stresses (<25 MPa), while the second
term is almost zero up to 10 MPa and primarily describes the volume change at higher compression
stresses (Figure 7).
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Table 6. Parameters derived by the fitting of the model of Cooper & Eaton (n = 6).

Material
V*

app With Solid Compressibility Term V*
c

a1 [-] k1 [MPa] a2 [-] k2 [MPa] a1c [-] k1c [MPa] a2c [-] k2c [MPa] R2 [-]

MCC 0.58 ± 0.01 1.46 ± 0.16 0.45 ± 0.01 20.2 ± 1.0 0.57 ± 0.01 1.43 ± 0.20 0.45 ± 0.01 18.7 ± 0.9 0.9998
Para 0.70 ± 0.003 1.40 ± 0.10 0.35 ± 0.003 43.7 ± 2.4 0.69 ± 0.003 1.37 ± 0.10 0.34 ± 0.003 38 ± 2.0 0.9993
Lac 0.52 ± 0.002 0.84 ± 0.00 0.54 ± 0.002 53.6 ± 0.4 0.9963

DCPA 0.45 ± 0.01 0.96 ± 0.10 0.42 ± 0.009 29.2 ± 1.9 0.9926Pharmaceutics 2019, 11, x FOR PEER REVIEW 13 of 19 
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The influence of the solid compressibility term on the derived specific compression parameters is
very small (Table 6). Only k2 of Para clearly decreases. k1, significant in the low compression stress
range, is the lowest for DCPA followed by Lac, MCC and Para. The resistance against filling of large
pores thus increases in this order. However, the differences between the four materials are small.
k2 differs more clearly. In this stress range, MCC shows the lowest resistance against the filling of
small pores by deformation followed by DCPA, Para and Lac. The lowest compression resistance
was expected for MCC and the highest for DCPA based on the slopes of the compression curves.
Furthermore, the inapplicability of the solid compressibility term for Lac and DCPA has to be taken
into account. The differentiation of the materials based on the resistance values of the model of Cooper
& Eaton is difficult as the parameters cannot be correlated to macroscopically reasonable rank orders
of the materials, as found as well by Sonnergaard [49]. Therefore, an extended in-die compression
function is developed, which is based on the models of Heckel and of Cooper & Eaton.

5.6. Extended in-die Compression Function

The extended in-die compression function consists also of two exponential terms (Equation
(13)) besides the solid compressibility term (Equation (11)). The counter and denominator of the
exponent of the exponential terms are inverted compared with the model of Cooper & Eaton and,
by that, in accordance to the model of Heckel. The limit value of these terms is zero, so that the solid
compressibility term is applicable in combination with this function.

εc, f it(σax) = ε l ·exp
(
−σax

σl

)
+ εh·exp

(
−σax

σh

)
(13)

where εl is the porosity change attributed to the low stress process and σl is the bulk densification
strength which is significant for the low stress process, while εh is the porosity change attributed to the
high stress process and σh is the material densification strength of the high stress process. The sum of
εl and εh equals the initial porosity at 0 MPa.

The in-die porosity curves are shifted or rather bent into the positive porosity range compared
with the apparent in-die porosity curves (Figure 8), by mathematically considering solid compressibility.
The derived in-die porosity approaches zero for materials with low densification strength. The curves
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of all four materials are bent to lower porosities just before reaching the maximum compression
stress. This curvature at maximum compression stress is technically caused but does not represent the
behaviour of the powder and therefore can be considered as measurement artefact due to construction,
instrumentation and operation of the compaction simulator. Based on the small stress range in which
this curvature occurs, it is not significant for the application of the extended in-die compression
function. The deviations between in-die porosity and the function are small (Figure 8) and the
correlation coefficients (Table 7) are very high for all investigated materials. The derived elastic
compressibility factors are in good accordance with the bulk moduli for MCC and Para and are
comparable to the values derived by applying the solid compressibility term in combination with the
model of Heckel (Table 4), except for DCPA. The elastic compressibility factor C of DCPA, derived by
the extended in-die compression function, is considerably higher. The in-die compression curve of
DCPA does approximate neither the zero line nor a plateau value in the applied compression stress
range. The in-die porosities at maximum compression stress are still very high (>20%). However,
one criterion of the determination of C is the convergence of the curve to the zero line. This range
is clearly outside (>1000 MPa) the considered compression stress range which in turn leads to the
mathematically uncertain determination of C. Furthermore, a deviation between C and K is visible for
Lac, which was already discussed in Chapter 5.4.
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Table 7. Specific compression parameters of the extended in-die compression function (n = 6).

Material εl [-] σl [MPa] εh [-] σh [MPa] C [GPa] R2 [-]

MCC 0.20 ± 0.00 8.5 ± 0.6 0.51 ± 0.01 79.0 ± 1.9 11.74 ± 0.30 0.9998
Para 0.24 ± 0.00 4.3 ± 0.1 0.28 ± 0.00 99.2 ± 3.2 15.97 ± 1.00 0.9993
Lac 0.14 ± 0.01 9.4 ± 0.5 0.32 ± 0.00 177.3 ± 5.6 14.80 ± 1.46 0.9997

DCPA 0.21 ± 0.00 16.8 ± 0.2 0.47 ± 0.00 668.6 ± 3.5 277.06 ± 10.20 0.9993

The first exponential term describes the low compression stress range, while the second
exponential term mainly describes the high compression stress range (Figure 9). A clear distinction of
the bulk densification strength σl of the four materials in the low compression stress range is visible
(Table 7). σl is most likely mainly dependent on the friction between particles and their Young’s
modulus. σl rises in the order Para < MCC < Lac < DCPA. This correlates well with the experimental
findings. The lowest bulk densification strength for Para may be explained by a facilitated particle
rearrangement due to the rectangular particle shape. σl of MCC is also low because of a facilitated
particle rearrangement due to the initially loose packing (initial porosity > 0.7) of the elongated particles.
The particle rearrangement of Lac may be hindered due to a closer initial packing of the particles
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because of the very broad particle size distribution. The reasons for the highest σl for DCPA might
be the hindered particle rearrangement due to a probably already very close packing of the spherical
particles and the low elasticity. These are certainly only hypothetical considerations, which have to be
proved by further investigations.

The material densification strength σh is the lowest for MCC. Para shows a slightly higher
resistance against compression followed by Lac. DCPA has the overall highest material densification
strength. The material densification strength of Para and MCC can be explained by the mainly
elastic and plastic deformation behaviour of these materials. The medium material densification
strength of Lac may be traced back to the higher necessary compression stress for the breakage of
the agglomerated/aggregated particles and the higher resistance of the primary particles against
deformation due to their smaller particle size. The reasons for the considerably higher material
densification strength of DCPA might be the high stiffness and low elasticity of this material.

The extended in-die compression function is well-suited for the precise description of the in-die
compression curves of all model materials and successfully mathematically considers the physical
effect of solid compressibility. Additionally, the extended in-die compression function enables the
successful quantification and differentiation of the compression behaviour of the materials investigated.
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5.7. Comparison in- and out-of-die Compressibility

Solid compressibility is only one part of the overall elastic deformation during powder
compression. Another factor is the elastic deformation and relaxation of the framework of the
particles, which is not considered by the introduced mathematical approach yet because of considering
only the compression curve but not the decompression curve so far. The elastic deformation of the
framework is thus the main reason for the differences between the in-die compressibilities considering
solid compressibility εc and the out-of-die compressibilities εT (Figure 10). Therefore, the remaining
differences provide information on the elastic deformation of the framework within the bulk. It can
be deduced that the elastic relaxation of the bulk framework of Lac is least pronounced while
the highest values are measured for MCC. It needs to be clarified whether this can be described
by an intercorrelation between solid compressibility and deformation mechanisms of the material.
Therefore, the consideration of the decompression curve is necessary. The out-of-die compressibility of
Para cannot be determined because of the occurrence of tablet defects due to capping. The differences
of the compressibility curves also cause differences of the mean yield pressures derived by in-die
Heckel analysis considering solid compressibility Py,c compared to out-of-die Heckel analysis Py,T

(Table 5). Py,c is lower compared to Py,T because of the consideration of the elastic deformation of the
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particle framework. The deformation behaviour of MCC is classified as brittle based on Py,T. This is
not reasonable because of the evidently plastic deformation behaviour of MCC [23,48]. The high
mean yield pressure Py,T can be traced back to the small slope of the out-of-die compressibility
between 200 MPa and 400 MPa. Furthermore, the mean yield pressure is dependent on the
considered compression stress range. The compression behaviour of a powder is not only affected
by plastic deformation and particle fragmentation but rather by all acting micro-processes including
particle rearrangement and elastic deformation. Therefore, the comprehensive characterization of
the compression behaviour requires the consideration of the entire compression curves including the
effect of all these micro-processes. The introduced in-die approach enables such a comprehensive
characterization of powder compressibility even if tablet defects occur.

The estimation of the complete elastic recovery of the bulk solely based on in-die compression by
a further development of the presented method using the decompression curve is a prospective aim.Pharmaceutics 2019, 11, x FOR PEER REVIEW 16 of 19 
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Figure 10. Comparison of in-die porosity considering solid compressibility εc with out-of-die
compressibility εT for DCPA, Lac and MCC.

6. Conclusions

The physical effect of solid compressibility, which causes the increase of solid density with rising
compression stress, cannot be neglected for the calculation of in-die porosities. The experimental
determination of the bulk modulus is difficult and expensive. Therefore, a mathematical term for
the consideration of solid compressibility is introduced based on physical considerations. This term
can be used for the extension of common mathematical models, such as the models of Heckel and
of Cooper & Eaton providing an inexpensive method for the consideration of the influence of solid
compressibility during uniaxial powder compression. This method can be applied even if tablet
defects occur. Additionally, an extended in-die compression function is introduced based on the
common models of Heckel and of Cooper & Eaton. This function precisely describes the entire in-die
compression curves and enables the successful differentiation and quantification of the compression
behaviour of the investigated pharmaceutical powders.

The consideration of solid compressibility leads to the approach of the in-die compression curves
to the out-of-die compression curves. However, differences are still visible because of the elastic
recovery of the bulk, which is not considered yet. The estimation of the elastic behaviour of the bulk
solely based on in-die compression by consideration of the decompression curve and thus the further
development of the presented method, is a prospective aim. Continuing, the systematic investigation of
the influence of material parameters (e.g., deformation behaviour, particle size and morphology) up to
complex mixtures is required to allow the evaluation of the proposed model for realistic formulations.
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